Cover of GeneReviews

GeneReviews [Internet].


【初稿】 核基因缺陷性Leigh综合征概述

Nuclear Gene-Encoded Leigh Syndrome Overview

英文原文链接

, FRCP, FRCPCH, PhD and , PhD.

Author Information

翻译者:李溪远

Initial Posting: 2017-08-29 10:46:49; Last Update: 2017-08-29 10:55:39.

摘要

临床特征.

Leigh综合征(或亚急性坏死性脑病) 以疾病发作间期机体出现失代偿(常伴血液和/或脑脊液中乳酸水平升高)为特征,通常与精神运动迟缓或退化有关,患者发病后常可出现一过性或长期稳定状态, 甚至可出现症状好转,但最终患者常不可避免出现进行性神经系统衰退,且常在逐渐减少药量期间出现。该病的神经系统表现包括肌张力降低、痉挛、运动障碍(包 括舞 蹈病)、小脑共济失调和周围神经病。

非神经系统表现可包括肥厚型心肌病、多毛症、贫血、肾小管病变、肝脏受累、 上睑下垂及肌无力。患者发病年龄通常介于12个月至3岁之间,约有50%患者在三岁时死亡,最常见诱因为呼吸衰竭或心力衰竭。偶尔存在晚期发病(包括成年期发病)及长期生存者。

诊断/检测.

基因缺 陷性Leigh综合征诊断的建立需要结合患者特征性的临床表现、颅脑核磁检查结果(基底神经节和/或脑干出现双侧对称性T2加权高信号)、 血液和/或脑脊液(Cerebrospinal fluid,CSF)变化(乳酸水平升高),以及遗传学病变(确认存在某具体核基因致病突变或排除mtDNA突变)进行综合考虑。

备注:术语“Leigh样综合征”常用于描述临床和其它特征明显提示为Leigh综合征,但由于神经影像学检查结果非典型或正常、正常的血液及CSF乳酸水平、 非典型性神经病理学特征和/或不完全的疾病评估,而不满足严格的Leigh综合征诊断标准的疾病。

遗传咨询.

基因缺陷性Leigh综合征和Leigh样综合征以常染色体隐性X连锁的方式遗传。

疾病管理.

症状治疗:特殊治疗方法可用于这三类核基因缺陷性Leigh样综合征的治疗:生物素-硫胺素反应性基底节病变 (Biotin-thiamine-responsive basal ganglia disease,BTBGD)、生物素酶缺乏症及由PDSS2突变所引起的辅酶Q10缺乏症。同时,针对所有核基因缺陷性Leigh综合征的支持性治疗包括酸中毒治疗、癫痫发作、肌张力障碍和心肌病的治疗,关注营养状态,并为患者的看护人员提供心理支持。

原发疾病表征预防:BTBGD、生物素酶缺乏症和由PDSS2突变所引起的辅酶Q10缺乏症的疾病表征可被预防。参见症状治疗。

继发性并发症预防:由于麻醉可加重患者的呼吸系统症状而引发呼吸衰竭,因而此类患者接受麻醉时应谨慎,且在麻醉开始前、麻醉过程中及麻醉操作结束后都应对病情进行密切监测。

病情监测:定期对患病个体进行随访(通常每半年至一年随访一次),以监测其疾病进展及有无新的表征出现。建议对患者进行神经系统、眼科、听力和心脏评估。

避免用药/情况:患者应避免使用丙戊酸钠、巴比妥类药物及二氯乙酸盐类药物。

定义

核基因缺陷性Leigh综合征的临床表征

Leigh综合征(或亚急性坏死性脑病)以疾病发作间期机体出现失代偿(常伴血液和/或脑脊液中乳酸水平升高)为特征,通常与精神运动迟缓或退化有关,患者发病后常可出现一过性或长期稳定状态,甚至可出现症状好转,但最终常不可避免出现进行性神经系统衰退,且常在逐渐减少药量期间出现。

神经系统表现包括肌张力降低、痉挛、运动障碍(包括舞蹈病)、小脑共济失调和周围神经病。

非神经系统表现可包括肥厚型心肌病、多毛症、贫血、肾小管病变、肝脏受累、 上睑下垂及肌无力。

患者发病年龄常介于12个月至3岁之间,约有50%患者在三岁时死亡,最常见诱因为呼吸衰竭或心力衰竭。

偶尔存在晚期发病(包括成年期发病)及长期生存者。

患者的预期寿命似乎与非神经系统表现有关,至少在一定程度上与其潜在遗传缺陷有关[Wedatilake et al 2013]。

建立核基因缺陷性Leigh综合征诊断

建立核基因缺陷性Leigh综合征的诊断需要满足以下条件[Rahman et al 1996, Lake et al 2015]:

  • 特征性临床表征(见定义
  • 脑部核磁检查显示基底神经节和/或脑干出现双侧对称性T2加权高密度信号
  • 血液和/或脑脊液(CSF)中乳酸升高
  • 检出特定核基因致病突变或排除mtDNA突变
    备注:如果对患者进行验尸检查,可发现该病的特征性神经病理学变化包括:位于基底神经节、丘脑、脑干、齿状核和视神经的多灶性对称性坏死病变。从组织学角度而言,病变呈海绵状外观,伴脱髓鞘、胶质细胞增生和血管增生。患者可出现神经元丢失,但相对较少。

Leigh样综合征.术 语“Leigh样综合征”常用于描述临床和其它特征明显提示为Leigh综合征,但由于神经影像检查结果非典型或正常、正常血液及CSF乳酸水平、 非典型性神经病理学特征(病变部位或特征出现差异或伴随其他异常特征,例如广泛的皮质损伤)和/或不完全的疾病评估,而不满足严格的Leigh综合征诊断标准的疾病。

核基因缺陷性Leigh综合征的患病率

基因缺陷性Leigh综合征的患病率约为1:40,000 [Rahman et al 1996]。

诱因

基因缺陷性Leigh综合征可根据其遗传模式和致病基因细分为:常染色体隐性遗传(见表1表2)以及X连锁遗传(见表3)。虽然核基因缺陷性Leigh综合征可由位于超过50种核基因的致病突变所引起,但所有这些基因缺陷中只有少数可导致个体发病,且发病患者数量极其有限。

常染色体隐性遗传性Leigh综合征和Leigh样综合征

常染色体隐性基因缺陷性Leigh综合征的诱因 (表1)包括:编码OXPHOS酶及其组装因子的基因突变,mtDNA维持、基因表达和蛋白合成缺陷,辅因子的生物合成(硫辛酸和辅酶Q10)缺陷,线粒体膜脂质重塑缺陷, 丙酮酸脱氢酶缺陷,生物素酶缺陷,维生素转运蛋白缺陷以及有机酸血症伴随代谢产物累积继发的OXPHOS功能障碍。

尽管某个特定基因突变可引起“经典” Leigh综合征或Leigh样综合征,但某些基因突变通常可导致经典Leigh综合征(表1),而其他基因突变常可引起Leigh样综合征或其他临床表现,且极少与经典Leigh综合征有关 (表2)。

表1.

常染色体隐性遗传性Leigh综合征

View in own window

基因 由该基因引起的AR LS比例 鉴别性临床特征 参考文献
HCM 神经病学 1 其他
复合物I缺陷性Leigh综合征 2
NDUFS1 <5%   囊性白质脑病   Bénit et al [2001]
NDUFS2 <5% +     Loeffen et al [2001]
NDUFS3 <5%       Bénit et al [2004]
NDUFS4 ~5% +     Budde et al [2000]
NDUFS7 <5%       Triepels et al [1999]
NDUFS8 <5% + 脑白质营养不良   Loeffen et al [1998]
NDUFV1 <5%   囊性白质脑病   Bénit et al [2001]
NDUFA2 1个家族 +     Hoefs et al [2008]
NDUFA9 1个家族       Van den Bosch et al [2012]
NDUFA10 1个家族 +     Hoefs et al [2011]
NDUFA12 1个家族   严重肌张力障碍 多毛症 Ostergaard et al [2011]
NDUFAF2 <5%  
MRI:乳头丘脑束、黑质/内侧丘系、内侧纵束及脊髓丘脑束对称性病变
  Barghuti et al [2008]
NDUFAF5
(C20orf7)
<5%     FILA(1名患者),在一个家族中出现,存活至20多岁 Sugiana et al [2008]
Gerards et al [2010]
NDUFAF6
(C8orf38)
1个家族       Pagliarini et al [2008]
FOXRED1 <5%   癫痫发作及肌肉阵挛  疾病进展缓慢,可存活至20多岁 Calvo et al [2010]
Fassone et al [2010]
复合物II缺陷性Leigh综合征 3
SDHA <5% + (可出现)   发病过程可缓慢,伴随/不伴随成年期存活 Bourgeron et al [1995]
Pagnamenta et al [2006]
SDHAF1 <5%   MRI显示脑白质病变 (1例LS神经病理学病变)   Ohlenbusch et al [2012]
复合物III缺陷性Leigh综合征  4
UQCRQ 1个家族     疾病进展缓慢,可存活至30多岁 Barel et al [2008]
TTC19 <5%   严重橄榄体-脑桥-小脑萎缩 疾病进展缓慢,可存活至20-30多岁 Ghezzi et al [2011]
BCS1L <5%   SNHL 近端肾小管病变、肝脏受累、扭曲发 de Lonlay et al [2001]
复合物 IV缺陷性Leigh综合征  5
NDUFA4 1个家族   癫痫、感觉性轴索周围神经病 疾病进展缓慢,可存活至20-30多岁 Pitceathly et al [2013]
SURF1 约占复合物IV缺陷性 LS的50% (约占全部LS的10%)   发育退化(71%)、眼球震颤 +眼肌麻痹(52%)、运动障碍(52%) 多毛症(48%);平均生存期为5.4年 Wedatilake et al [2013]
COX10 <5% + SNHL 贫血(由线粒体血红素A生物合成缺乏所致) Antonicka et al [2003]
COX15 <5% + 癫痫发作   Oquendo et al [2004]
SCO2 <5% +     Joost et al [2010]
LRPPRC 6 <5%   代谢性和神经系统(卒中样)危象 存活时间为5天至30岁以上;平均死亡年龄为1.6岁 Debray et al [2011]
TACO1 1个家族   认知功能障碍、肌张力障碍、视力受损 晚期发病(4-16岁),疾病进展缓慢 Weraarpachai et al [2009]
PET100 7 <5%   突发癫痫发作 存活至20多岁(50%) Lim et al [2014]

LS=  Leigh综合征

FILA =  致死性婴儿乳酸酸中毒

HCM = 肥厚型心肌病

SNHL = 感觉神经性听力丧失

  1. 除了这些经典Leigh综合征表现以外的神经学发现
  2. 定义性特征:复合物I缺陷症(根据肌肉活检结果确诊)
  3. 复合物II缺陷症可根据肌肉活检结果确诊,也可根据脑部MRS显示的琥珀酸盐峰值进行确诊
  4. 复合物III缺陷症可根据肌肉活检结果确诊
  5. 复合物IV缺陷症可根据肌肉活检结果确诊。备注:对SURF1基因相关的LS而言,体外培养的皮肤成纤维细胞中的复合物IV缺陷比肌肉组织中更为严重。
  6. 来自圣约翰湖区的法国-加拿大人群中致病性等位基因突变发现者
  7. 黎巴嫩人口中致病突变的发现者

表2.

常染色体隐性遗传性Leigh样综合征

在您自己的窗口中查看

疾病名称 基因 鉴别性临床特征 实验室检查结果 参考文献
神经系统 其他
线粒体DNA耗竭综合征 (肝脑变性) POLG 眼球运动不固定、突发癫痫发作 肝脑疾病 多种RCE缺陷1, 孤立性复合物IV缺陷(罕见) Taanman et al [2009]
线粒体DNA耗竭综合征 (脑部病变) SUCLA2 2 肌张力过低、肌肉萎缩、运动过度、严重SNHL 生长迟缓 MMA,多种RCE缺陷 Elpeleg et al [2005], Ostergaard et al [2007]
SUCLG1 严重肌病 复发性肝衰竭 MMA,多种RCE缺陷 Van Hove et al [2010]
FBXL4 癫痫发作 面部畸形、骨骼异常、 生长不良、胃肠道功能不全、肾小管性酸中毒 多种RCE缺陷 Shamseldin et al [2012]
线粒体tRNA修饰缺陷 TRMU 1名患者报告出现LS 常可引起良性可逆性肝脏衰竭伴随/不伴随神经系统症状 Taylor et al [2014]
线粒体转译(甲酰化)缺陷  MTFMT 一些患者可出现囊性白质脑病 一些患者病情可进展缓慢,可存活至20多岁 Tucker et al [2011], Haack et al [2014]
丙氨酰tRNA合成酶缺陷(线粒体转译缺陷) FARS2 严重癫痫、其他患者可出现Alpers综合征   1名患者出现孤立性复合物IV缺陷症,其他患者未进行酶学检查 Shamseldin et al [2012]
谷氨酰胺酰tRNA合成酶缺陷(线粒体转译缺陷) EARS2 脑白质病变伴随/不伴随丘脑及脑干受累及乳酸水平升高(MRI) 患者可出现症状好转,一些患者可出现肝衰竭 多种RCE缺陷 Martinelli et al [2012]
异亮氨酰氨酰tRNA合成酶缺陷(线粒体转译缺陷) IARS2 一名LS患儿在18月龄时死亡;SNHL、周围感觉神经病变 3名成人患者出现白内障、生长激素缺乏及骨骼发育不良 未进行酶学检查 Schwartzentruber et al [2014]
线粒体转译(伸长)缺陷 GFM1 轴向张力降低、痉挛、难治性癫痫 一些患者出现进行性肝性脑病 多种RCE缺陷 Valente et al [2007]
TSFM 少年期发病、共济失调、神经病变、视神经萎缩  生长延迟、HCM Ahola et al [2014]
线粒体转译缺陷 C12orf65 眼肌麻痹、视神经萎缩、 轴索神经病 疾病进展相对缓慢 多种RCE缺陷(fbs) Antonicka et al [2010]
多聚核糖核苷酸核苷转移酶缺陷  PNPT1 3 舞蹈手足徐动症及运动功能障碍;患者也可出现孤立性SNHL 严重肌张力障碍 1名患者肝脏中存在复合物III+IV缺陷(nml activ in mb & fbs) Vedrenne et al [2012]
辅酶Q10缺陷(癸酰二磷酸合成酶亚基2缺陷) PDSS2 难治性癫痫 肾病综合征4 复合物I+III, II+III及辅酶Q10缺陷 (mb) López et al [2006]
硫辛酸合成缺陷 LIAS 癫痫发作伴随/不伴随爆发抑制(EEG) 轻度HCM PDH + 甘氨酸裂解酶联合缺陷、尿+血浆甘氨酸水平升高、缺乏脂质化蛋白(Western印迹杂交法) Baker et al [2014]
LIPT1 1名患者出现LS;2名患者出现FILA 肝功能不全 谷氨酰胺和脯氨酸水平升高,赖氨酸及支链氨基酸和nml甘氨酸水平较低(不同于其他硫辛酸合成酶缺陷);PDH及α-KGDH活性严重降低、BCKDH活性 (fbs)明显增强、RCE活性正常 Soreze et al [2013], Tort et al [2014]
MEGDEL综合征 SERAC1 SNHL 肝脏受累可在婴儿期出现,后期恢复正常 3-甲基戊二酸尿症 Wortmann et al [2012]
PDH B缺陷症 PDHB CC发育不全   PDH缺陷症 (fbs) Quintana et al [2009]
二氢硫辛酰胺脱氢酶缺陷症 DLD 发作性脑病 低血糖、酮症酸中毒、肝功能衰竭 血浆支链氨基酸浓度升高、PDH缺乏症(fbs) Grafakou et al [2003], Quinonez et al [2013]
PDH E3结合蛋白缺陷 PDHX 胼胝体较薄/胼胝体发育不全;疾病后期出现癫痫持续状态(青年期/20多岁)   PDH缺陷症 (fbs) Schiff et al [2006]
硫辛酸代谢功能障碍综合征4(双侧纹状体变性及进行性多发性神经病型)5 SLC25A19 双侧纹状体病变、发作性脑病、慢性进行性多发性神经病,可引起远端肌无力及挛缩   未进行酶学检查 Spiegel et al [2009]
硫辛酸代谢功能障碍综合征 5 (发作性脑病型) TPK1 发作性脑病、共济失调、肌张力障碍、痉挛   2-酮戊二酸尿症 Mayr et al [2011]
生物素酶缺乏症 BTD 耳聋、视神经萎缩、癫痫发作、共济失调4 脱发、湿疹 特征性有机酸尿症 Mitchell et al [1986]
生物素-硫胺素-反应性基底神经节疾病(硫胺素转运蛋白-2缺乏症) SLC19A3 参见脚注4   RCE活性正常 Gerards et al [2013], Fassone et al [2013]
乙基丙二酸脑病 ETHE1 神经系统发育延迟及退化、椎体及锥体外系体征 婴儿期出现肢端发绀、瘀点及腹泻 乙基丙二酸尿症 Mineri et al [2008]
3-羟基丁酰基CoA水解酶缺陷 HIBCH 发育迟缓、癫痫发作、共济失调   血浆4-羟基丁酰肉碱水平升高;多种RCE及PDH缺陷症 Ferdinandusse et al [2013]
短链烯酰CoA水合酶缺陷 ECHS1 3 精神运动迟缓、SNHL、眼球震颤、肌张力过低、痉挛及手足徐动型运动 1名患者出现HCM 尿中S-(2-羧丙基)半胱氨酸排泄增加;1名患者RCR活性正常,1名患者出现多种REC缺陷 Peters et al [2014], Sakai et al [2015]

α-KGDH =  α-酮戊二酸脱氢酶

BCKDH =  支链酮酸脱氢酶

CC = 胼胝体

EEG = 脑电图

fbs = 体外培养的皮肤成纤维细胞

FILA = 致死性婴儿乳酸酸中毒

HCM = 肥厚型心肌病

LS = Leigh综合征

mb = 肌肉活检

MDDS =  线粒体DNA耗竭综合征

MMA = 甲基丙二酸血症

MRS = 磁共振光谱学检查

mt = 线粒体

PDH = 丙酮酸脱氢酶

RCE = 呼吸链酶

SNHL = 感觉神经性听力丧失

  1. 除了一个案例之外,其他案例均根据肌肉活检结果评估了RCE活性
  2. 法罗群岛的突变发现者
  3. 单个家族被报道
  4. 可治疗,参见疾病管理
  5. 阿米什致死性小头症、线粒体硫胺素焦磷酸载体缺乏症相关的等位基因

X连锁遗传性Leigh综合征和Leigh样综合征

X连锁方式遗传的核基因缺陷性Leigh综合征和Leigh样综合征总结见表3

表3.

X连锁遗传性Leigh综合征和Leigh样综合征

View in own window

疾病名称 基因 鉴别性特征 实验室检查结果 参考文献
PDH缺陷症 PDHA1 精神运动迟缓;癫痫发作;舞蹈手足徐动症;肌张力障碍;一些患者可出现阵发性运动失调症;小头畸形;脑萎缩;基底神经节、脑干及大脑半球囊性病变;胼胝体发育不全;面部畸形 血液及脑脊液中乳酸/丙酮酸比值偏低/偏低至正常;PDH缺乏症(fbs) Rahman et al [1996]
复合物I缺陷性LS NDUFA1 发育延迟;轴向肌张力过低;眼球震颤;舞蹈手足徐动症;肌肉阵挛性癫痫;2名患者存活至30多岁 复合物I缺陷 (mb) Fernandez-Moreira et al [2007]
X连锁性线粒体脑肌病  AIFM1 线粒体脑肌病伴随/不伴随双侧纹状体病变 多种RCE缺陷(mb) Ghezzi et al [2010]

LS = Leigh综合征

PDH = 丙酮酸脱氢酶

RCE = 呼吸链酶

核基因缺陷性Leigh综合征的鉴别诊断

基因缺陷性Leigh综合征的鉴别诊断包括线粒体DNA相关的Leigh综合征、非线粒体遗传引起的双侧纹状体坏死(例如由ADAR1基因、NUP62基因或RANBP2基因突变所引起)以及获得性非遗传性诱因,例如病毒性脑病。

线粒体DNA相关的Leigh综合征(也称为母系遗传性Leigh综合征,MILS)的特征总结见表4。另见mtDNA相关性Leigh综合征和NARP线粒体疾病概述

表4.

线粒体DNA相关的Leigh综合征 

View in own window

基因 肌肉活检发现 参考文献
MT-ND1 复合物I缺陷 Kirby et al [2004]
MT-ND2 Ugalde et al [2007]
MT-ND3 Lebon et al [2003]
MT-ND4 Komaki et al [2003]
MT-ND5 Santorelli et al [1997a]
MT-ND6 Kirby et al [2000]
MT-CO3 复合物IV缺陷 Tiranti et al [2000]
MT-ATP6 复合物V缺陷 Harding et al [1992]
MT-TI 多种RCE缺陷 Cox et al [2012]
MT-TK Rahman et al [1996]
MT-TL1 Rahman et al [1996]
MT-TV McFarland et al [2002]
MT-TW Santorelli et al [1997b]
大量mtDNA基因缺失 Rahman et al [1996]

RCE= 呼吸链酶

评估策略

患者一旦被诊断为Leigh综合征或Leigh样综合征(表1、 表2表3),则明确具体病因将有助于探讨疾病预后和治疗方案(参见检测,可治疗性疾病)以及进行遗传咨询。可根据以下信息确定特定个体出现Leigh综合征的具体诱因:临床发现、家族史、专业检测结果及分子遗传学/基因组学检测结果。

临床发现. Leigh综合征和Leigh样综合征的临床表现可参见表123

关于Leigh 综合征较常见遗传病因(表1表3)的回顾性分析表明存在不同基因突变的个体表型差异和临床表现常可互相重叠,因此,患者特定的临床和/或影像学检查结果只有在少数情况下才有助于指导某个基因亚群的检测。例如:

  • 目前已有报道称因SURF1基因或LRPPRC基因突变而致病的患者人数超过40人[Debray et al 2011, Wedatilake et al 2013]。SURF1基因缺陷患者的平均生存期(5.4年)要长于LRPPRC基因缺陷患者(1.8年),据说是由于后者可更为频繁地出现严重的代谢危象所致。SURF1基因缺陷似乎也可引起高发性多毛症和周围神经病[Wedatilake et al 2013]。
  • 基因PDHA1突变患者通常可出现颅脑畸形[Patel et al 2012]。一些亚组复合物I缺陷症患者可出现特定脑纤维束受累,例如,NDUFAF2基因突变患者的T2加权核磁检查显示脑干病变可见于乳头丘脑束、黑质、内侧丘系、内侧纵束和脊髓丘脑束内 [Fassone & Rahman 2012]。

家族史.收集患者三代以内的家族史,同时还须注意其他存在神经系统症状和体征或符合线粒体疾病临床特征的亲属。对亲属资料的收集和记录可通过直接检查或分析他们的病历资料,包括分子遗传学检测结果、神经影像学检查结果及尸体检查结果。

具体发现,例如疾病的母系家族史可促进对线粒体DNA进行初步调查,或血缘关系可促进对常染色体隐性基因进行初步调查。当然,这些特征的出现有时带有偶然性, 如果没有检测出致病性突变,后续则应进行更加全面的检测[Alston et al 2011]。

检测

血液和/或脑脊液乳酸水平升高可以:

  • 提示Leigh综合征及其他具有类似临床表现的疾病;
  • 当乳酸/丙酮酸比值偏低或正常时,提示为可引起PDH缺陷症的基因突变 [Debray et al 2007]。

酶活性评估. 酶类,例如通常会在体外培养的皮肤成纤维细胞中进行PDH评估(fbs见表123),而呼吸链酶通常在骨骼肌中进行评估(mb见表123)。尽管明确酶缺陷可帮助确定分子遗传学检测的优先级,但该方法仍可造成大量待测基因(例如呼吸链酶复合物I-缺陷性Leigh 综合征至今已被证明可由至少15种常染色体基因(表1)、1种X连锁基因表3)和6种线粒体基因(表4)的致病突变引起)。

分子遗传学检测方法可包括串联单基因检测、 多基因组检测及更为全面的基因组学检测。
  • 串联单基因检测 可在于下列情况下考虑使用,如果(1) 某种特定基因突变是该疾病的主要诱因或者 (2)临床发现、实验室检查结果和/或家族数据(表1表23)提示某种特定基因突变最有可能是是该疾病的主要诱因。通常会先对可疑基因进行序列分析,只有当发现某个常染色体隐性疾病的致病突变或未发现常染色体隐性或X连锁疾病的致病突变时,才会进行后续的基因靶向缺失/复制分析
  • 多基因组检测包括对所有这些基因中的多个基因或全部基因进行检测(参见鉴别诊断),对其他相关基因也可考虑进行检测。 备注:多基因检测所包括的基因检测范围和其灵敏度因检测实验室和时间而异。
    更多关于多基因检测的信息,请点击这里
  • 更为全面的基因组学检测(如果可用)包括外显子测序基因组测序以及线粒体测序。如果串联单基因检测(和/或使用多基因组检测)不能为存在核基因缺陷性Leigh综合征的患者明确其诊断,则可考虑使用更为全面的基因组学检测。更多关于全面基因组测序的信息,请点击这里

可治疗性疾病.可治疗性核基因缺陷性Leigh样综合征(参见症状治疗)的诱因包括:

怀 疑这些疾病时应根据疾病指征尽快进行生化或遗传学检测,或者如果无法进行这些检测,那么一旦怀疑患者为该疾病则应尽快开始尝试使用相关维生素/辅因子治 疗。理想情况下,治疗应该持续下去,直至生化和/或遗传学检测结果排除这些疾病诊断,而且如果证实为该诊断也应继续治疗以维持生命。

遗传咨询

遗传咨询是为个体和家庭提供有关遗传疾病性质、遗传特征及疾病预后信息以便帮助他们做出明智的医疗和个人选择的过程。以下部分将论述遗传风险 评估及如何根据家族史和基因检测结果以明确家庭成员的遗传状态。这一部分内容并非致力于解决患者可能会面对的所有关乎个人、文化或伦理的问题,也不可代替遗传 学专业人士会诊 —ED。.

遗传模式

基因缺陷性Leigh综合征和Leigh样综合征以常染色体隐性X连锁的方式遗传。

家族成员风险 — 常染色体隐性遗传Leigh综合征

先症者父母

  • 患者的父母是必然杂合子(即某种致病突变的携带者)。
  • 杂合子(携带者)无症状且无发病风险。 

先症者同胞

  • 怀孕时,患者的所有同胞都具有25%的患病风险、50%的无症状携带者风险以及25% 的不受影响亦不是携带者的几率。
  • 杂合子(携带者)无症状,也不具有发病风险。
先症者后代. 患者未曾生育过后代。

其他家族成员. 先症者父母的所有同胞成为某个致病突变的携带者的风险都为50%。

携带者(杂合子)检测 . 高危风险亲属进行携带者检测时,需要事先明确其家族中的致病突变类型。

家族成员风险— X连锁遗传性Leigh综合征

由PDHA1基因、NDUFA1基因和AIFM1基因突变所引起的核基因缺陷性Leigh综合征的遗传方式为X连锁遗传。

目前已被报道的PDHA1基因相关的Leigh综合征患者中男性和女性的数量几乎相等[Lissens et al 2000, Imbard et al 2011]。尽管已被报道的NDUFA1基因相关的LS和AIFM1基因相关的LS患者的例数相对较少,但预期所有这三种疾病的性别比例类似。

先症者父母

先症者同胞

  • 先症者同胞的患病风险取决于母亲的遗传状态。
  • 如果先症者母亲存在PDHA1基因、NDUFA1基因或AIFM1基因的致病突变,则每次母亲通过妊娠将该突变遗传给子女的几率为50%。遗传该致病突变的男性个体将会成为患病个体;而遗传该致病突变的女性个体也很可能会患病,除非她们存在有利的X染色体失活偏倚。
  • 如果先症者是某个单发案例(即家族中仅出现一个案例),并且在母亲的白细胞DNA中检测不出PDHA1基因、NDUFA1基因或AIFM1基因的致病突变,那么同胞的患病风险较低。但是由于可能存在母系生殖系嵌合体,其风险仍高于一般人群。

先症者后代. 患者未曾生育过后代。

其他家族成员. 先症者的姨母可能是高危杂合子,而这个姨母的儿子具有遗传致病突变患病的风险。

杂合子(携带者)检测

如果已在先症者体内检出致病突变,则针对高危女性亲属进行分子遗传学检测以明确其遗传状态的说服力最强。

存在PDHA1基因、NDUFA1基因或AIFM1基因致病突变的杂合子女性很可能患病,除非她们存在有利的X染色体失活偏倚。预计X染色体失活模式,尤其是在脑部的模式,可在很大程度上决定患者的临床状态。

备注:据说由Imbard et al [2011]报道的11名杂合子母亲未出现疾病症状。然而,根据作者的临床经验,杂合子个体常可出现一些学习障碍或其他特征。

遗传咨询相关问题

DNA库可用于储存DNA( 常提取自白细胞)以供将来使用。因为未来很有可能会出现更好的检测方法,而且我们对于基因、等位基因突变和疾病的认识会也有所提高,所以应考虑储存患病个体的DNA。

产前检测和胚胎着床前遗传学诊断

一旦某个患病家族成员被检测出致病突变,可针对核基因缺陷性Leigh综合征进行高危妊娠产前检测及胚胎着床前遗传诊断

备注:对于存在X连锁性Leigh综合征的家族,分子遗传学产前检测结果无法用于预测携带家族性致病突变的女性胚胎出现疾病结局的风险。

资源

GeneReviews员工选择了下述具体疾病和/或保护性支持机构和/或注册管理机构,以造福患有这种疾病的个人和其家庭。GeneReviews将不对其他机构所提供的信息负有法律责任。关于选择标准信息,请点击这里

  • 国家医学遗传学图书馆参考文献
  • 澳大利亚线粒体疾病基金会(Australian Mitochondrial Disease Foundation,AMDF)
    青年街9-13,6层,套房4
    悉尼
    澳大利亚
    电话:1-300-977-180
    传真: 02-9999-3474
    邮箱地址: info@amdf.org.au
  • 遗传代谢性疾病患儿(Children Living with Inherited Metabolic Diseases,CLIMB)组织
    英国
    电话:0800-652-3181
    邮箱地址: info.svcs@climb.org.uk
  • 美国肌肉萎缩症协会(Muscular Dystrophy Association,MDA)
    南滨河广场222 
    套房1500
    芝加哥IL 60606
    电话:800-572-1717
    邮箱地址: mda@mdausa.org
  • Lily基金会
    华仑公园区31号
    萨里 R6 9LD
    英国
    电话: 07947 257247
    传真:01883 623799
    邮箱地址: liz@thelilyfoundation.org.uk
  • 美国线粒体疾病基金会 (United Mitochondrial Disease Foundation,UMDF)
    萨尔茨堡路8085号
    套房201
    匹兹堡PA 15239
    电话: 888-317-8633 (toll-free); 412-793-8077
    传真: 412-793-6477
    邮箱地址:info@umdf.org
  • 线粒体疾病登记和组织库
    马萨诸塞州总医院ospital
    剑桥大街185号
    Simches研究大楼5-238
    波士顿MA 02114
    电话:617-726-5718
    传真:617-724-9620
    邮箱地址:nslate@partners.org
  • RDCRN患者联系注册平台:北美线粒体疾病联盟

疾病管理

症状治疗

特殊治疗方法可用于下述三类核基因缺陷性Leigh样综合征的治疗:

  • 生物素-硫胺素-反应性基底神经节疾病(BTBGD) (也称为硫胺素转运蛋白2缺陷症)(SLC19A3基因突变)。生物素(5-10 mg/kg/day)及硫胺素(给药剂量范围:300-900 mg)应尽量在疾病早期开始口服给药,并终生持续用药。症状常可在数日内缓解。
  • 生物素酶缺乏症 (BTD).复杂生物素酶缺乏症患儿可每天使用5-10mg口服生物素治疗以改善症状。所有复杂生物素酶缺乏症患者都应终生持续使用生物素治疗。
  • 辅酶Q10生物合成缺陷症 (PDSS2).口服辅酶Q10补充剂(儿童给药剂量:10-30 mg/kg/day in children,成人给药剂量:1200-3000 mg/day )应尽量在疾病早期开始给药,并终生持续用药 [Rahman et al 2012]。

支持性治疗可针对核基因缺陷性Leigh综合征的诱因进行治疗,包括以下内容:

  • 酸中毒. 碳酸氢钠或枸橼酸钠可用于治疗急性酸中毒加重。
  • 癫痫发作. 在神经科医师的指导下根据患者癫痫的类型选择适宜的抗癫痫药物进行治疗。由于丙戊酸钠和巴比妥类药物对线粒体呼吸链酶具有抑制作用,治疗时应避免使用这些药物[Melegh & Trombitas 1997, Anderson et al 2002]。
  • 肌张力障碍
    • 苯海索、巴氯芬、丁苯喹嗪和加巴喷丁单独给药或联合用药可治疗肌张力障碍;治疗应从低剂量给药开始,并逐渐增加给药剂量至控制症状或患者出现了不能耐受的副作用。
    • 肉毒杆菌毒素注射剂也可用于Leigh综合征及患有严重难治性肌张力障碍的患者。
  • 心肌病.患者可能需要采用药物治疗,应在心脏科医师的监督下用药。
  • 营养状况. 须对患者每日热量摄入及饮食结构是否合理进行定期评估,包括微营养元素和喂养管理。
  • 心理支持对患者及其家属而言十分必要。

原发症状预防

关于以下疾病的治疗方案,参见症状治疗:

  • 硫胺素转运蛋白缺陷症(SLC19A3基因突变)
  • 生物素缺乏症(BTD)
  • 辅酶Q10生物合成缺陷(PDSS2)

继发性并发症预防

麻醉可加重患者的呼吸症状并引发患者出现呼吸衰竭,因而,患者接受麻醉时应谨慎,且在麻醉操作前、操作过程中及操作完成之后对患者进行密切监测[Shear & Tobias 2004, Niezgoda & Morgan 2013]。

疾病监测

定期 (通常为每6-12个月)对患者进行随访以监测其疾病进展及有无出现新的表征。另外,建议对患者进行神经系统、眼科、听力及心脏学评估。

避免用药/环境

丙戊酸钠和巴比妥类药物应避免使用,因为它们对线粒体呼吸链酶具有抑制作用[Melegh & Trombitas 1997, Anderson et al 2002]。

二氯乙酸盐(Dichloroacetate ,DCA)可通过激活PDH复合物降而低血液乳酸水平。

  • 一项DCA应用于另一种线粒体疾病MELAS的双盲安慰剂对照试验未发现该药物对治疗该疾病有任何益处,却发现DCA对周围神经具有毒副作用[Kaufmann et al 2006]。
  •  一项后续报道描述了36名先天性乳酸酸中毒患儿长期接受DCA给药的结局(开放性随机对照试验)[Stacpoole et al 2008]。 该研究总结称年幼先天性乳酸酸中毒患儿对口服DCA耐受良好,无法判定长期DCA给药相关的周围神经病是否应归因于药物作用或归因于潜在的疾病过程。鉴于 在这些情况下存在疾病本身可诱发周围神经病的潜在风险,因此,核编码基因缺陷性LS患者应避免使用DCA。

参考文献

引用文献

  • Ahola S, Isohanni P, Euro L, Brilhante V, Palotie A, Pihko H, Lönnqvist T, Lehtonen T, Laine J, Tyynismaa H, Suomalainen A. Mitochondrial EFTs defects in juvenile-onset Leigh disease, ataxia, neuropathy, and optic atrophy. Neurology. 2014;83:743–51. [PMC free article: PMC4150129 ] [PubMed: 25037205]
  • Alston CL, He L, Morris AA, Hughes I, de Goede C, Turnbull DM, McFarland R, Taylor RW. Maternally inherited mitochondrial DNA disease in consanguineous families. Eur J Hum Genet. 2011;19:1226–9. [PMC free article: PMC3230363 ] [PubMed: 21712854]
  • Anderson CM, Norquist BA, Vesce S, Nicholls DG, Soine WH, Duan S, Swanson RA. Barbiturates induce mitochondrial depolarization and potentiate excitotoxic neuronal death. J Neurosci. 2002;22:9203–9. [PubMed: 12417645]
  • Antonicka H, Leary SC, Guercin GH, Agar JN, Horvath R, Kennaway NG, Harding CO, Jaksch M, Shoubridge EA. Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early onset clinical phenotypes associated with isolated COX deficiency. Hum Mol Genet. 2003;12:2693–702. [PubMed: 12928484]
  • Antonicka H, Ostergaard E, Sasarman F, Weraarpachai W, Wibrand F, Pedersen AM, Rodenburg RJ, van der Knaap MS, Smeitink JA, Chrzanowska-Lightowlers ZM, Shoubridge EA. Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. Am J Hum Genet. 2010;87:115–22. [PMC free article: PMC2896764 ] [PubMed: 20598281]
  • Baker PR 2nd, Friederich MW, Swanson MA, Shaikh T, Bhattacharya K, Scharer GH, Aicher J, Creadon-Swindell G, Geiger E, Maclean KN, Lee WT, Deshpande C, Freckmann ML, Shih LY, Wasserstein M, Rasmussen MB, Lund AM, Procopis P, Cameron JM, Robinson BH, Brown GK, Brown RM, Compton AG, Dieckmann CL, Collard R, Coughlin CR 2nd, Spector E, Wempe MF, Van Hove JL. Variant nonketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain. 2014;137:366–79. [PMC free article: PMC3914472 ] [PubMed: 24334290]
  • Barel O, Shorer Z, Flusser H, Ofir R, Narkis G, Finer G, Shalev H, Nasasra A, Saada A, Birk OS. Mitochondrial complex III deficiency associated with a homozygous mutation in UQCRQ. Am J Hum Genet. 2008;82:1211–6. [PMC free article: PMC2427202 ] [PubMed: 18439546]
  • Barghuti F, Elian K, Gomori JM, Shaag A, Edvardson S, Saada A, Elpeleg O. The unique neuroradiology of complex I deficiency due to NDUFA12L defect. Mol Genet Metab. 2008;94:78–82. [PubMed: 18180188]
  • Bénit P, Chretien D, Kadhom N, de Lonlay-Debeney P, Cormier-Daire V, Cabral A, Peudenier S, Rustin P, Munnich A, Rotig A. Large-scale deletion and point mutations of the nuclear NDUFV1 and NDUFS1 genes in mitochondrial complex I deficiency. Am J Hum Genet. 2001;68:1344–52. [PMC free article: PMC1226121 ] [PubMed: 11349233]
  • Bénit P, Slama A, Cartault F, Giurgea I, Chretien D, Lebon S, Marsac C, Munnich A, Rotig A, Rustin P. Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome. J Med Genet. 2004;41:14–7. [PMC free article: PMC1757256 ] [PubMed: 14729820]
  • Bourgeron T, Rustin P, Chretien D, Birch-Machin M, Bourgeois M, Viegas-Pequignot E, Munnich A, Rotig A. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet. 1995;11:144–9. [PubMed: 7550341]
  • Budde SM, van den Heuvel LP, Janssen AJ, Smeets RJ, Buskens CA, DeMeirleir L, Van Coster R, Baethmann M, Voit T, Trijbels JM, Smeitink JA. Combined enzymatic complex I and III deficiency associated with mutations in the nuclear encoded NDUFS4 gene. Biochem Biophys Res Commun. 2000;275:63–8. [PubMed: 10944442]
  • Calvo SE, Tucker EJ, Compton AG, Kirby DM, Crawford G, Burtt NP, Rivas M, Guiducci C, Bruno DL, Goldberger OA, Redman MC, Wiltshire E, Wilson CJ, Altshuler D, Gabriel SB, Daly MJ, Thorburn DR, Mootha VK. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet. 2010;42:851–8. [PMC free article: PMC2977978 ] [PubMed: 20818383]
  • Cox R, Platt J, Chen LC, Tang S, Wong LJ, Enns GM. Leigh syndrome caused by a novel m.4296G>A mutation in mitochondrial tRNA isoleucine. Mitochondrion. 2012;12:258–61. [PubMed: 21982779]
  • de Lonlay P, Valnot I, Barrientos A, Gorbatyuk M, Tzagoloff A, Taanman JW, Benayoun E, Chrétien D, Kadhom N, Lombès A, de Baulny HO, Niaudet P, Munnich A, Rustin P, Rötig A. A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet. 2001;29:57–60. [PubMed: 11528392]
  • Debray FG, Mitchell GA, Allard P, Robinson BH, Hanley JA, Lambert M. Diagnostic accuracy of blood lactate-to-pyruvate molar ratio in the differential diagnosis of congenital lactic acidosis. Clin Chem. 2007;53:916–21. [PubMed: 17384007]
  • Debray FG, Morin C, Janvier A, Villeneuve J, Maranda B, Laframboise R, Lacroix J, Decarie JC, Robitaille Y, Lambert M, Robinson BH, Mitchell GA. LRPPRC mutations cause a phenotypically distinct form of Leigh syndrome with cytochrome c oxidase deficiency. J Med Genet. 2011;48:183–9. [PubMed: 21266382]
  • Elpeleg O, Miller C, Hershkovitz E, Bitner-Glindzicz M, Bondi-Rubinstein G, Rahman S, Pagnamenta A, Eshhar S, Saada A. Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am J Hum Genet. 2005;76:1081–6. [PMC free article: PMC1196446 ] [PubMed: 15877282]
  • Fassone E, Duncan AJ, Taanman JW, Pagnamenta AT, Sadowski MI, Holand T, Qasim W, Rutland P, Calvo SE, Mootha VK, Bitner-Glindzicz M, Rahman S. FOXRED1, encoding an FAD-dependent oxidoreductase complex-I-specific molecular chaperone, is mutated in infantile-onset mitochondrial encephalopathy. Hum Mol Genet. 2010;19:4837–47. [PMC free article: PMC4560042 ] [PubMed: 20858599]
  • Fassone E, Rahman S. Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet. 2012;49:578–90. Erratum in: J Med Genet. 2012;49:668. [PubMed: 22972949]
  • Fassone E, Wedatilake Y, DeVile CJ, Chong WK, Carr LJ, Rahman S. Treatable Leigh-like encephalopathy presenting in adolescence. BMJ Case Rep. 2013;2013:200838. [PMC free article: PMC3822156 ] [PubMed: 24099834]
  • Ferdinandusse S, Waterham HR, Heales SJ, Brown GK, Hargreaves IP, Taanman JW, Gunny R, Abulhoul L, Wanders RJ, Clayton PT, Leonard JV, Rahman S. HIBCH mutations can cause Leigh-like disease with combined deficiency of multiple mitochondrial respiratory chain enzymes and pyruvate dehydrogenase. Orphanet J Rare Dis. 2013;8:188. [PMC free article: PMC4222069 ] [PubMed: 24299452]
  • Fernandez-Moreira D, Ugalde C, Smeets R, Rodenburg RJ, Lopez-Laso E, Ruiz-Falco ML, Briones P, Martin MA, Smeitink JA, Arenas J. X-linked NDUFA1 gene mutations associated with mitochondrial encephalomyopathy. Ann Neurol. 2007;61:73–83. [PubMed: 17262856]
  • Gerards M, Kamps R, van Oevelen J, Boesten I, Jongen E, de Koning B, Scholte HR, de Angst I, Schoonderwoerd K, Sefiani A, Ratbi I, Coppieters W, Karim L, de Coo R, van den Bosch B, Smeets H. Exome sequencing reveals a novel Moroccan founder mutation in SLC19A3 as a new cause of early-childhood fatal Leigh syndrome. Brain. 2013;136:882–90. [PubMed: 23423671]
  • Gerards M, Sluiter W, van den Bosch BJ, de Wit LE, Calis CM, Frentzen M, Akbari H, Schoonderwoerd K, Scholte HR, Jongbloed RJ, Hendrickx AT, de Coo IF, Smeets HJ. Defective complex I assembly due to C20orf7 mutations as a new cause of Leigh syndrome. J Med Genet. 2010;47:507–12. [PMC free article: PMC2921275 ] [PubMed: 19542079]
  • Ghezzi D, Arzuffi P, Zordan M, Da Re C, Lamperti C, Benna C, D'Adamo P, Diodato D, Costa R, Mariotti C, Uziel G, Smiderle C, Zeviani M. Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nat Genet. 2011;43:259–63. [PubMed: 21278747]
  • Ghezzi D, Sevrioukova I, Invernizzi F, Lamperti C, Mora M, D'Adamo P, Novara F, Zuffardi O, Uziel G, Zeviani M. Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet. 2010;86:639–49. [PMC free article: PMC2850437 ] [PubMed: 20362274]
  • Grafakou O, Oexle K, van den Heuvel L, Smeets R, Trijbels F, Goebel HH, Bosshard N, Superti-Furga A, Steinmann B, Smeitink J. Leigh syndrome due to compound heterozygosity of dihydrolipoamide dehydrogenase gene mutations. Description of the first E3 splice site mutation. Eur J Pediatr. 2003;162:714–8. [PubMed: 12925875]
  • Haack TB, Gorza M, Danhauser K, Mayr JA, Haberberger B, Wieland T, Kremer L, Strecker V, Graf E, Memari Y, Ahting U, Kopajtich R, Wortmann SB, Rodenburg RJ, Kotzaeridou U, Hoffmann GF, Sperl W, Wittig I, Wilichowski E, Schottmann G, Schuelke M, Plecko B, Stephani U, Strom TM, Meitinger T, Prokisch H, Freisinger P. Phenotypic spectrum of eleven patients and five novel MTFMT mutations identified by exome sequencing and candidate gene screening. Mol Genet Metab. 2014;111:342–52. [PubMed: 24461907]
  • Harding AE, Holt IJ, Sweeney MG, Brockington M, Davis MB. Prenatal diagnosis of mitochondrial DNA8993 T----G disease. Am J Hum Genet. 1992;50:629–33. [PMC free article: PMC1684296 ] [PubMed: 1539598]
  • Hoefs SJ, Dieteren CE, Distelmaier F, Janssen RJ, Epplen A, Swarts HG, Forkink M, Rodenburg RJ, Nijtmans LG, Willems PH, Smeitink JA, van den Heuvel LP. NDUFA2 complex I mutation leads to Leigh disease. Am J Hum Genet. 2008;82:1306–15. [PMC free article: PMC2427319 ] [PubMed: 18513682]
  • Hoefs SJ, van Spronsen FJ, Lenssen EW, Nijtmans LG, Rodenburg RJ, Smeitink JA, van den Heuvel LP. NDUFA10 mutations cause complex I deficiency in a patient with Leigh disease. Eur J Hum Genet. 2011;19:270–4. [PMC free article: PMC3061993 ] [PubMed: 21150889]
  • Imbard A, Boutron A, Vequaud C, Zater M, de Lonlay P, de Baulny HO, Barnerias C, Miné M, Marsac C, Saudubray JM, Brivet M. Molecular characterization of 82 patients with pyruvate dehydrogenase complex deficiency. Structural implications of novel amino acid substitutions in E1 protein. Mol Genet Metab. 2011;104:507–16. [PubMed: 21914562]
  • Joost K, Rodenburg R, Piirsoo A, van den Heuvel B, Zordania R, Ounap K. A novel mutation in the SCO2 gene in a neonate with early-onset cardioencephalomyopathy. Pediatr Neurol. 2010;42:227–30. [PubMed: 20159436]
  • Kaufmann P, Engelstad K, Wei Y, Jhung S, Sano MC, Shungu DC, Millar WS, Hong X, Gooch CL, Mao X, Pascual JM, Hirano M, Stacpoole PW, DiMauro S, De Vivo DC. Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology. 2006;66:324–30. [PubMed: 16476929]
  • Kirby DM, Kahler SG, Freckmann ML, Reddihough D, Thorburn DR. Leigh disease caused by the mitochondrial DNA G14459A mutation in unrelated families. Ann Neurol. 2000;48:102–4. [PubMed: 10894222]
  • Kirby DM, McFarland R, Ohtake A, Dunning C, Ryan MT, Wilson C, Ketteridge D, Turnbull DM, Thorburn DR, Taylor RW. Mutations of the mitochondrial ND1 gene as a cause of MELAS. J Med Genet. 2004;41:784–9. [PMC free article: PMC1735602 ] [PubMed: 15466014]
  • Komaki H, Akanuma J, Iwata H, Takahashi T, Mashima Y, Nonaka I, Goto Y. A novel mtDNA C11777A mutation in Leigh syndrome. Mitochondrion. 2003;2:293–304. [PubMed: 16120329]
  • Lake NJ, Bird MJ, Isohanni P, Paetau A. Leigh syndrome: neuropathology and pathogenesis. J Neuropathol Exp Neurol. 2015;74:482–92. [PubMed: 25978847]
  • Lebon S, Chol M, Benit P, Mugnier C, Chretien D, Giurgea I, Kern I, Girardin E, Hertz-Pannier L, de Lonlay P, Rötig A, Rustin P, Munnich A. Recurrent de novo mitochondrial DNA mutations in respiratory chain deficiency. J Med Genet. 2003;40:896–9. [PMC free article: PMC1735336 ] [PubMed: 14684687]
  • Lim SC, Smith KR, Stroud DA, Compton AG, Tucker EJ, Dasvarma A, Gandolfo LC, Marum JE, McKenzie M, Peters HL, Mowat D, Procopis PG, Wilcken B, Christodoulou J, Brown GK, Ryan MT, Bahlo M, Thorburn DR. A founder mutation in PET100 causes isolated complex IV deficiency in Lebanese individuals with Leigh syndrome. Am J Hum Genet. 2014;94:209–22. [PMC free article: PMC3928654 ] [PubMed: 24462369]
  • Lissens W, De Meirleir L, Seneca S, Liebaers I, Brown GK, Brown RM, Ito M, Naito E, Kuroda Y, Kerr DS, Wexler ID, Patel MS, Robinson BH, Seyda A. Mutations in the X-linked pyruvate dehydrogenase (E1) alpha subunit gene (PDHA1) in patients with a pyruvate dehydrogenase complex deficiency. Hum Mutat. 2000;15:209–19. [PubMed: 10679936]
  • Loeffen J, Elpeleg O, Smeitink J, Smeets R, Stöckler-Ipsiroglu S, Mandel H, Sengers R, Trijbels F, van den Heuvel L. Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy. Ann Neurol. 2001;49:195–201. [PubMed: 11220739]
  • Loeffen J, Smeitink J, Triepels R, Smeets R, Schuelke M, Sengers R, Trijbels F, Hamel B, Mullaart R, van den Heuvel L. The first nuclear-encoded complex I mutation in a patient with Leigh syndrome. Am J Hum Genet. 1998;63:1598–608. [PMC free article: PMC1377631 ] [PubMed: 9837812]
  • López LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJ, Naini A, Dimauro S, Hirano M. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet. 2006;79:1125–9. [PMC free article: PMC1698707 ] [PubMed: 17186472]
  • Martinelli D, Catteruccia M, Piemonte F, Pastore A, Tozzi G, Dionisi-Vici C, Pontrelli G, Corsetti T, Livadiotti S, Kheifets V, Hinman A, Shrader WD, Thoolen M, Klein MB, Bertini E, Miller G. EPI-743 reverses the progression of the pediatric mitochondrial disease--genetically defined Leigh Syndrome. Mol Genet Metab. 2012;107:383–8. [PubMed: 23010433]
  • Mayr JA, Freisinger P, Schlachter K, Rolinski B, Zimmermann FA, Scheffner T, Haack TB, Koch J, Ahting U, Prokisch H, Sperl W. Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway. Am J Hum Genet. 2011;89:806–12. [PMC free article: PMC3234371 ] [PubMed: 22152682]
  • McFarland R, Clark KM, Morris AA, Taylor RW, Macphail S, Lightowlers RN, Turnbull DM. Multiple neonatal deaths due to a homoplasmic mitochondrial DNA mutation. Nat Genet. 2002;30:145–6. [PubMed: 11799391]
  • Melegh B, Trombitas K. Valproate treatment induces lipid globule accumulation with ultrastructural abnormalities of mitochondria in skeletal muscle. Neuropediatrics. 1997;28:257–61. [PubMed: 9413004]
  • Mineri R, Rimoldi M, Burlina AB, Koskull S, Perletti C, Heese B, von Döbeln U, Mereghetti P, Di Meo I, Invernizzi F, Zeviani M, Uziel G, Tiranti V. Identification of new mutations in the ETHE1 gene in a cohort of 14 patients presenting with ethylmalonic encephalopathy. J Med Genet. 2008;45:473–8. [PubMed: 18593870]
  • Mitchell G, Ogier H, Munnich A, Saudubray JM, Shirrer J, Charpentier C, Rocchiccioli F. Neurological deterioration and lactic acidemia in biotinidase deficiency. A treatable condition mimicking Leigh's disease. Neuropediatrics. 1986;17:129–31. [PubMed: 3762868]
  • Niezgoda J, Morgan PG. Anesthetic considerations in patients with mitochondrial defects. Paediatr Anaesth. 2013;23:785–93. [PMC free article: PMC3711963 ] [PubMed: 23534340]
  • Ohlenbusch A, Edvardson S, Skorpen J, Bjornstad A, Saada A, Elpeleg O, Gärtner J, Brockmann K. Leukoencephalopathy with accumulated succinate is indicative of SDHAF1 related complex II deficiency. Orphanet J Rare Dis. 2012;2012;7:69. [PMC free article: PMC3492161 ] [PubMed: 22995659]
  • Oquendo CE, Antonicka H, Shoubridge EA, Reardon W, Brown GK. Functional and genetic studies demonstrate that mutation in the COX15 gene can cause Leigh syndrome. J Med Genet. 2004;41:540–4. [PMC free article: PMC1735852 ] [PubMed: 15235026]
  • Ostergaard E, Hansen FJ, Sorensen N, Duno M, Vissing J, Larsen PL, Faeroe O, Thorgrimsson S, Wibrand F, Christensen E, Schwartz M. Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain. 2007;130:853–61. [PubMed: 17287286]
  • Ostergaard E, Rodenburg RJ, van den Brand M, Thomsen LL, Duno M, Batbayli M, Wibrand F, Nijtmans L. Respiratory chain complex I deficiency due to NDUFA12 mutations as a new cause of Leigh syndrome. J Med Genet. 2011;48:737–40. [PubMed: 21617257]
  • Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134:112–23. [PMC free article: PMC2778844 ] [PubMed: 18614015]
  • Pagnamenta AT, Hargreaves IP, Duncan AJ, Taanman JW, Heales SJ, Land JM, Bitner-Glindzicz M, Leonard JV, Rahman S. Phenotypic variability of mitochondrial disease caused by a nuclear mutation in complex II. Mol Genet Metab. 2006;89:214–21. [PubMed: 16798039]
  • Patel KP, O'Brien TW, Subramony SH, Shuster J, Stacpoole PW. The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. Mol Genet Metab. 2012;106:385–94. [PMC free article: PMC4003492 ] [PubMed: 22896851]
  • Peters H, Buck N, Wanders R, Ruiter J, Waterham H, Koster J, Yaplito-Lee J, Ferdinandusse S, Pitt J. ECHS1 mutations in Leigh disease: a new inborn error of metabolism affecting valine metabolism. Brain. 2014;137:2903–8. [PubMed: 25125611]
  • Pitceathly RD, Rahman S, Wedatilake Y, Polke JM, Cirak S, Foley AR, Sailer A, Hurles ME, Stalker J, Hargreaves I, Woodward CE, Sweeney MG, Muntoni F, Houlden H, Taanman JW, Hanna MG. UK10K Consortium. NDUFA4 mutations underlie dysfunction of a cytochrome c oxidase subunit linked to human neurological disease. Cell Rep. 2013;3:1795–805. [PMC free article: PMC3701321 ] [PubMed: 23746447]
  • Quinonez SC, Leber SM, Martin DM, Thoene JG, Bedoyan JK. Leigh syndrome in a girl with a novel DLD mutation causing E3 deficiency. Pediatr Neurol. 2013;48:67–72. [PMC free article: PMC4535688 ] [PubMed: 23290025]
  • Quintana E, Mayr JA, García Silva MT, Font A, Tortoledo MA, Moliner S, Ozaez L, Lluch M, Cabello A, Ricoy JR, Koch J, Ribes A, Sperl W, Briones P. PDH E(1)beta deficiency with novel mutations in two patients with Leigh syndrome. J Inherit Metab Dis. 2009;32 Suppl 1:S339–43. [PubMed: 19924563]
  • Rahman S, Blok RB, Dahl HH, Danks DM, Kirby DM, Chow CW, Christodoulou J, Thorburn DR. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol. 1996;39:343–51. [PubMed: 8602753]
  • Rahman S, Clarke CF, Hirano M. 176th ENMC International Workshop: diagnosis and treatment of coenzyme Q10 deficiency. Neuromuscul Disord. 2012;22:76–86. [PMC free article: PMC3222743 ] [PubMed: 21723727]
  • Sakai C, Yamaguchi S, Sasaki M, Miyamoto Y, Matsushima Y, Goto Y. ECHS1 mutations cause combined respiratory chain deficiency resulting in Leigh syndrome. Hum Mutat. 2015;36:232–9. [PubMed: 25393721]
  • Santorelli FM, Tanji K, Kulikova R, Shanske S, Vilarinho L, Hays AP, DiMauro S. Identification of a novel mutation in the mtDNA ND5 gene associated with MELAS. Biochem Biophys Res Commun. 1997a;238:326–8. [PubMed: 9299505]
  • Santorelli FM, Tanji K, Sano M, Shanske S, El-Shahawi M, Kranz-Eble P, DiMauro S, De Vivo DC. Maternally inherited encephalopathy associated with a single-base insertion in the mitochondrial tRNATrp gene. Ann Neurol. 1997b;42:256–60. [PubMed: 9266739]
  • Schiff M, Miné M, Brivet M, Marsac C, Elmaleh-Bergés M, Evrard P, Ogier de Baulny H. Leigh's disease due to a new mutation in the PDHX gene. Ann Neurol. 2006;59:709–14. [PubMed: 16566017]
  • Schwartzentruber J, Buhas D, Majewski J, Sasarman F, Papillon-Cavanagh S, Thiffault I, Sheldon KM, Massicotte C, Patry L, Simon M, Zare AS, McKernan KJ., FORGE Canada Consortium. Michaud J, Boles RG, Deal CL, Desilets V, Shoubridge EA, Samuels ME. Mutation in the nuclear-encoded mitochondrial isoleucyl-tRNA synthetase IARS2 in patients with cataracts, growth hormone deficiency with short stature, partial sensorineural deafness, and peripheral neuropathy or with Leigh syndrome. Hum Mutat. 2014;35:1285–9. [PubMed: 25130867]
  • Shamseldin HE, Alshammari M, Al-Sheddi T, Salih MA, Alkhalidi H, Kentab A, Repetto GM, Hashem M, Alkuraya FS. Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J Med Genet. 2012;49:234–41. [PubMed: 22499341]
  • Shear T, Tobias JD. Anesthetic implications of Leigh's syndrome. Paediatr Anaesth. 2004;14:792–7. [PubMed: 15330965]
  • Soreze Y, Boutron A, Habarou F, Barnerias C, Nonnenmacher L, Delpech H, Mamoune A, Chrétien D, Hubert L, Bole-Feysot C, Nitschke P, Correia I, Sardet C, Boddaert N, Hamel Y, Delahodde A, Ottolenghi C, de Lonlay P. Mutations in human lipoyltransferase gene LIPT1 cause a Leigh disease with secondary deficiency for pyruvate and alpha-ketoglutarate dehydrogenase. Orphanet J Rare Dis. 2013;8:192. [PMC free article: PMC3905285 ] [PubMed: 24341803]
  • Spiegel R, Shaag A, Edvardson S, Mandel H, Stepensky P, Shalev SA, Horovitz Y, Pines O, Elpeleg O. SLC25A19 mutation as a cause of neuropathy and bilateral striatal necrosis. Ann Neurol. 2009;66:419–24. [PubMed: 19798730]
  • Stacpoole PW, Gilbert LR, Neiberger RE, Carney PR, Valenstein E, Theriaque DW, Shuster JJ. Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate. Pediatrics. 2008;121:e1223–8. [PMC free article: PMC3777225 ] [PubMed: 18411236]
  • Sugiana C, Pagliarini DJ, McKenzie M, Kirby DM, Salemi R, Abu-Amero KK, Dahl HH, Hutchison WM, Vascotto KA, Smith SM, Newbold RF, Christodoulou J, Calvo S, Mootha VK, Ryan MT, Thorburn DR. Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet. 2008;83:468–78. [PMC free article: PMC2561934 ] [PubMed: 18940309]
  • Taanman JW, Rahman S, Pagnamenta AT, Morris AA, Bitner-Glindzicz M, Wolf NI, Leonard JV, Clayton PT, Schapira AH. Analysis of mutant DNA polymerase gamma in patients with mitochondrial DNA depletion. Hum Mutat. 2009;30:248–54. [PubMed: 18828154]
  • Taylor RW, Pyle A, Griffin H, Blakely EL, Duff J, He L, Smertenko T, Alston CL, Neeve VC, Best A, Yarham JW, Kirschner J, Schara U, Talim B, Topaloglu H, Baric I, Holinski-Feder E, Abicht A, Czermin B, Kleinle S, Morris AA, Vassallo G, Gorman GS, Ramesh V, Turnbull DM, Santibanez-Koref M, McFarland R, Horvath R, Chinnery PF. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA. 2014;312:68–77. [PubMed: 25058219]
  • Tiranti V, Corona P, Greco M, Taanman JW, Carrara F, Lamantea E, Nijtmans L, Uziel G, Zeviani M. A novel frameshift mutation of the mtDNA COIII gene leads to impaired assembly of cytochrome c oxidase in a patient affected by Leigh-like syndrome. Hum Mol Genet. 2000;9:2733–42. [PubMed: 11063732]
  • Tort F, Ferrer-Cortès X, Thió M, Navarro-Sastre A, Matalonga L, Quintana E, Bujan N, Arias A, García-Villoria J, Acquaviva C, Vianey-Saban C, Artuch R, García-Cazorla À, Briones P, Ribes A. Mutations in the lipoyltransferase LIPT1 gene cause a fatal disease associated with a specific lipoylation defect of the 2-ketoacid dehydrogenase complexes. Hum Mol Genet. 2014;23:1907–15. [PubMed: 24256811]
  • Triepels RH, van den Heuvel LP, Loeffen JL, Buskens CA, Smeets RJ, Rubio Gozalbo ME, Budde SM, Mariman EC, Wijburg FA, Barth PG, Trijbels JM, Smeitink JA. Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Ann Neurol. 1999;45:787–90. [PubMed: 10360771]
  • Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE. RajBhandary UL, Thorburn DR, Mootha VK. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab. 2011;14:428–34. [PMC free article: PMC3486727 ] [PubMed: 21907147]
  • Ugalde C, Hinttala R, Timal S, Smeets R, Rodenburg RJ, Uusimaa J, van Heuvel LP, Nijtmans LG, Majamaa K, Smeitink JA. Mutated ND2 impairs mitochondrial complex I assembly and leads to Leigh syndrome. Mol Genet Metab. 2007;90:10–4. [PubMed: 16996290]
  • Valente L, Tiranti V, Marsano RM, Malfatti E, Fernandez-Vizarra E, Donnini C, Mereghetti P, De Gioia L, Burlina A, Castellan C, Comi GP, Savasta S, Ferrero I, Zeviani M. Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am J Hum Genet. 2007;80:44–58. [PMC free article: PMC1785320 ] [PubMed: 17160893]
  • van den Bosch BJ, Gerards M, Sluiter W, Stegmann AP, Jongen EL, Hellebrekers DM, Oegema R, Lambrichs EH, Prokisch H, Danhauser K, Schoonderwoerd K, de Coo IF, Smeets HJ. Defective NDUFA9 as a novel cause of neonatally fatal complex I disease. J Med Genet. 2012;49:10–5. [PubMed: 22114105]
  • Van Hove JL, Saenz MS, Thomas JA, Gallagher RC, Lovell MA, Fenton LZ, Shanske S, Myers SM, Wanders RJ, Ruiter J, Turkenburg M, Waterham HR. Succinyl-CoA ligase deficiency: a mitochondrial hepatoencephalomyopathy. Pediatr Res. 2010;68:159–64. [PMC free article: PMC2928220 ] [PubMed: 20453710]
  • Vedrenne V, Gowher A, de Lonlay P, Nitschke P, Serre V, Boddaert N, Altuzarra C, Mager-Heckel AM, Chretien F, Entelis N, Munnich A, Tarassov I, Rötig A. Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency. Am J Hum Genet. 2012;91:912–8. [PMC free article: PMC3487136 ] [PubMed: 23084291]
  • Wedatilake Y, Brown RM, McFarland R, Yaplito-Lee J, Morris AA, Champion M, Jardine PE, Clarke A, Thorburn DR, Taylor RW, Land JM, Forrest K, Dobbie A, Simmons L, Aasheim ET, Ketteridge D, Hanrahan D, Chakrapani A, Brown GK, Rahman S. SURF1 deficiency: a multi-centre natural history study. Orphanet J Rare Dis. 2013;8:96. [PMC free article: PMC3706230 ] [PubMed: 23829769]
  • Weraarpachai W, Antonicka H, Sasarman F, Seeger J, Schrank B, Kolesar JE, Lochmüller H, Chevrette M, Kaufman BA, Horvath R, Shoubridge EA. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat Genet. 2009;41:833–7. [PubMed: 19503089]
  • Wortmann SB, Vaz FM, Gardeitchik T, Vissers LE, Renkema GH, Schuurs-Hoeijmakers JH, Kulik W, Lammens M, Christin C, Kluijtmans LA, Rodenburg RJ, Nijtmans LG, Grünewald A, Klein C, Gerhold JM, Kozicz T, van Hasselt PM, Harakalova M, Kloosterman W, Barić I, Pronicka E, Ucar SK, Naess K, Singhal KK, Krumina Z, Gilissen C, van Bokhoven H, Veltman JA, Smeitink JA, Lefeber DJ, Spelbrink JN, Wevers RA, Morava E, de Brouwer AP. Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet. 2012;44:797–802. [PubMed: 22683713]

Chapter Notes

Author Notes

Professor Rahman’s Web page

Professor Thorburn’s Web page

Professor Rahman’s research interests include identification of novel nuclear genes causing mitochondrial disease, using a combination of approaches including homozygosity mapping and and genome next-generation sequencing. Her group has identified a number of nuclear genes causing childhood-onset mitochondrial disorders, including genes involved in mitochondrial DNA maintenance and expression, complex I and complex IV function and biosynthesis of coenzyme Q10. Other research interests aim to identify biomarkers and novel therapies for childhood mitochondrial disorders.

David Thorburn's research focuses on improving diagnosis, prevention and treatment of mitochondrial energy generation disorders. This has included translating knowledge of mitochondrial DNA genetics into reproductive options for families, defining diagnostic criteria and epidemiology and discovery of new “disease” genes through Next Generation DNA sequencing. His group also uses cellular and mouse models to understand pathogenic mechanisms and trial new treatment approaches.

Revision History

  • 1 October 2015 (me) Review posted live
  • 17 February 2015 (sr) Original submission
 
Copyright © 1993-2017, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.

GeneReviews® chapters are owned by the University of Washington. Permission is hereby granted to reproduce, distribute, and translate copies of content materials for noncommercial research purposes only, provided that (i) credit for source (