【初稿】 遗传性痉挛性截瘫概述

Hereditary Spastic Paraplegia Overview

家族性痉挛性截瘫, 遗传性痉挛性下肢轻瘫, Strumpell-Lorrain综合征
英文原文链接

, MD
Department of Neurology
University of Michigan
Ann Arbor, Michigan

翻译者:商慧芳,陈永平

Initial Posting: 2017-09-01 11:51:55; Last Update: 2018-05-30 02:55:36.

概要

临床特征.

遗 传性痉挛性截瘫 (HSPs)是一组具有临床及遗传异质性的疾病,其临床特点为下肢痉挛及无力 (以不同比例出现)。 若于童年后发病,症状通常会缓慢而平稳地进展;若于儿童早期发病,症状通常为非进展性并类似于痉挛型双瘫。

“单 纯型”HSP临床特点为:神经功能缺损仅限于下肢的痉挛性无力、高渗性膀胱功能障碍和下肢震动觉的轻微减退。“复杂型” HSP除上述单纯型HSP的损害外还同时伴有其他系统或神经系统的异常,如共济失调、癫痫、认知损害、痴呆、肌萎缩、锥体外系症状或周围神经病(排除引起 这些附加症状的其他病因)。

对单纯型HSP患者的神经检查证实:其肌张力呈现不同程度的增高(痉挛),尤其是 腘绳肌、股四头肌、腓肠肌、比目鱼肌和内收肌群;髂腰肌、腘绳肌和胫前肌无力;膝反射和踝反射亢进;经常(不总是)出现足趾振动觉的轻微减退;足底伸肌反应和痉挛步态。

诊断/检查.

诊断HSP需要:

  • 典型的痉挛步态和神经检查发现下肢痉挛及无力;
  • 经常 (尽管不总是)有一级亲属受累的家族史;和
  • 排除其他疾病。

头颅和脊髓磁共振成象 (MRI)结果一般正常;单纯型HSP患者的脑脊液检查,肌电图,和神经传导检查通常正常。

基因检测越来越易获得,其对证实HSP的临床诊断格外重要。因为现如今的并未囊括所有已知会导致HSP的基因,所以即使没有确定导致HSP的致病性变异也不能排除HSP的诊断。

遗传咨询.

HSP基因型可由常染色体显性、常染色体隐性、X连锁或母系(线粒体)遗传。研究发现此基因型外显率高(估计90%)。遗传咨询依赖于准确的诊断和确定每个家族 。基因检测对于确定HSP的基因型很有帮助。如果一个家族被鉴定出有致病性变异,可对家族中怀孕风险增加的妇女做痉挛性截瘫某些类型的产前检查。

治疗.

目 前没有能防止或逆转HSP神经变性的治疗手段。治疗通常是为了减轻症状和通过物理和康复治疗增强力量和平衡能力;通过辅助器具加强功能性步态(例如:踝- 足矫正设备);通过药物治疗和拉伸减轻痉挛(例如:口服和鞘内注射巴氯芬,肌内注射肉毒毒素);通过药物缓解尿急症状。

定义

HSP临床表现

HSP 主要表现为下肢无力和痉挛。若于儿童早期发病,症状通常为非进展性并类似于痉挛型双瘫。 若于童年后发病,症状通常会缓慢而平稳地进展。几年以后,少部分患者步态逐渐恶化的进入“功能性平台期” (即步态异常的进一步加重与年龄增长对疾病的贡献一致).

分类. HSP临床上被分为单纯型(非综合征型)和复杂型(),基因上根据,和/或致病等位基因分类。HSP遗传位点根据他们被发现的时间顺序定名为SPG(代表“痉挛性截瘫”)1- 56[].

  • "非复杂型" ("单纯型") HSP 临床特点为:神经功能损伤仅限于进行性的下肢痉挛性无力,高顺应性膀胱,下肢震动觉轻微减退。 [].
    单纯型HSP可在任何年龄发病,从儿童早期到成年晚期。症状可以是非进展性的(当疾病发生于儿童早期时);或在之后的若干年缓慢进展(当症状于童年后出现时,早期发病的非进展性HSP症状可以类似痉挛型双瘫。)
    患者会经历行走困难(非进展性或者隐匿性恶化)并通常需要拐杖、步行器或者轮椅。可能会出现尿急和下肢感觉减退。
    单纯型HSP患者通常保留上肢正常的力量和灵活性并且语言、咀嚼和吞咽功能不受累。尽管可能会造成残疾,但是单纯型HSP并不缩短患者寿命。
  • "复杂型" HSP 临床特点为:在单纯型HSP症状上同时还出现其他系统或者神经系统受累,包括共济失调、癫痫、智力损害、痴呆、肌萎缩、锥体外系症状或者周围神经病,这些伴随症状并不是由其它病因所致。

建立HSP的诊断

HSP诊断基础:

  • 双侧下肢痉挛性无力通常伴随尿急,下肢症状可以是非进展性(儿童早期起病)或缓慢进展(童年后发病)
  • 神经检查证实皮质脊髓束缺损影响双下肢(痉挛性无力,发射亢进,典型的伴双侧跖反射阳性,经常伴有下肢远端振动觉轻微受损和高顺应性膀胱。
  • 家族史符合常染色体显性、常染色体隐性或X连锁、母系(线粒体)遗传。
  • 排除其他疾病 (见鉴别诊断)
  • 分子遗传检测;越来越容易获取并且对证实临床诊断的HSP具有潜在作用。

神经检查. 单纯型HSP患者有以下表现:

双下肢痉挛状态(主要为腘绳肌、股四头肌、内收肌群和腓肠-比目鱼肌)和无力(髂腰肌、腘绳肌、胫前肌为主)。痉挛状态和无力是可变的,一些患者有痉挛状态而无明显的无力,而其他患者有大约相同比例的痉挛和无力。

  • 下肢腱反射亢进和跖反射阳性。
  • 常有下肢远端振动觉的轻微损害。

神经病理.单纯型HSP最常被报道的病理学特征是轴索变性,以皮质脊髓束远端末尾处为重,其次,在脊髓纤维远端。可能出现前角细胞轻微丢失。如果存在脱髓鞘,其将与轴索变性的程度一致。[, ].

HSP鉴别诊断

鉴别诊断包括:

 HSP患病率

HSP患病率估计从1.3:100,000 (在爱尔兰) [], 到9.6: 100,000 (在西班牙) [].

HSP基因型. 迄今为止,多达56个HSP位点和41个HSP-相关基因已经被鉴定出。

表 1.

遗传性痉挛性截瘫总结 – 常染色体显性遗传

基因 /位点名称 (染色体位点1) 蛋白 临床症状 参考文献
ATL1 / SPG3A Atlastin-1 单纯型HSP:
  • 典型的发生在儿童期(可能是非进展性)或青少年到成年(隐匿性进展)
  • 致病基因携带者但不外显
  • 新生的被报道以痉挛型双瘫形式出现
, ,
SPAST / SPG4 Spastin 单纯型HSP;造成AD HSP的最常见原因 (~40%):
  • 起病时间从婴儿期到老年
  • 晚发的认知障碍表现各异
, , , ,
NIPA1 / SPG6 Non- in Prader-Willi / Angelman syndrome region protein 1 (magnesium transporter NIPA1) 单纯型HSP:
  • 青春晚期,成年早期发病, 缓慢进展
  • 罕见合并癫痫或者不同的周围神经病; 有一例并发ALS
, , , , , ,
KIAA0196 / SPG8 KIAA0196 (WASH complex subunit strumpellin) 单纯型HSP , , , ,
SPG9
(10q23.3-q24.1)
Unknown 复杂型 HSP:
  • 白内障
  • 胃食管返流
  • 运动神经元病
,
KIF5A / SPG10 Kinesin heavy chain isoform 5A 单纯型HSP或合并远端肌肉萎缩  ,
RTN2 / SPG12 Reticulon-2 单纯型 HSP ,
HSPD1 / SPG13 Chaperonin 60 (heat shock protein 60, HSP60) 单纯型HSP: 青少年 – 成人发病 , ,
BSCL2 / SPG17 BSCL2 (seipin) 复杂型HSP: 手部肌肉萎缩(Silver综合征) , ,
SPG19
(9q)
Unknown 单纯型HSP
SPG29
(1p31.1-21.1)
Unknown 复杂型 HSP:
  • 听力障碍
  • 由于食管裂孔疝导致的持续性呕吐(遗传的)
REEP1 / SPG31 Receptor expression- enhancing protein 1 单纯型HSP或偶尔伴发周围神经病 , ,
ZFYVE27 / SPG33 Protrudin 单纯型HSP
SPG36
(12q23-q24)
Unknown
  • 起病年龄14-28岁
  • 运动感觉性神经病
SPG37
(8p21.1-q13.3)
Unknown 单纯型HSP
SPG38
(4p16-p15)
Unknown 在一个家庭的五名成员中:
  • 起病年龄16-21岁
  • 手内在肌萎缩(在一个58岁的患者中严重)
SPG40 ( unknown) Unknown 单纯型HSP:
  • 起病年龄>35
  • 排除已知的AD HSP位点
SPG41
(11p14.1-p11.2)
Unknown 在一个中国家庭中:
  • 青少年起病
  • 手内在肌轻度无力
SLC33A1 / SPG42 Acetyl -coenzyme A transporter 在一个家族中呈单纯型HSP:
  • 起病年龄4-40岁
  • 有1个可能呈不完全显性的例子
, ,
 

数据从以下标准引用中编译: from HGNC; , , , complementation group from OMIM; protein from UniProt.

 

痉挛性截瘫: 表型系列来查看OMIM中与此相关的基因

1.

只有当未知时才显示染色体

表2.

遗传性痉挛性截瘫总结 – 常染色体隐性遗传

基因 / 位点名称 
(染色体位点 1)
蛋白 临床症状 参考文献
CYP7B1 / SPG5A CYP7B1 protein 单纯型或复杂型伴:
  • 轴索神经病
  • 远端或全身性肌肉萎缩
  • MRI示脑白质异常
, , , , , ,
SPG7 / SPG7 Paraplegin 单纯型; 或不同的复杂型伴:
  • 骨骼肌活检示线粒体异常
  • 构音障碍,吞咽苦难,视盘苍白,轴索神经病和头颅MRI示血管病变,小脑萎缩,或大脑萎缩 
,
SPG11 / SPG11 Spatacsin 被报道导致50% 的AR HSP。单纯型;或不同的复杂型伴:
  • 胼胝体发育不良, ID, 上肢无力, 构音障碍,和
  • ‘Kjellin综合征’ (儿童起病, 进展性 SPG伴色素性视网膜病, ID, 构音障碍, 痴呆, 和远端肌肉萎缩)
  • 青少年, 缓慢进展性ALS
,
SPG14
(3q27-q28)
Unknown 在一个意大利家庭的3个成员中发现复杂型HSP:
  • 起病年龄 ~30岁
  • ID & 远端运动神经病 (腓肠神经活检正常)
ZFYVE26 / SPG15 Zinc finger FYVE -containing protein 26 复杂型 HSP: 色素黄斑病变,远端肌萎缩, 构音障碍, ID, &进一步智能损害 (Kjellins综合征) 表现各不相同 ,
ERLIN2 / SPG18 Erlin-2 在两个家庭中发现复杂型 HSP:
  • ID &胼胝体发育不良
  • 在伴青少年原发性侧索硬化的患者中也鉴定出ERLIN2致病性变异
, ,
SPART / SPG20 Spartin 复杂型 HSP: 远端肌肉萎缩 (Troyer 综合征) , , , ,
SPG21 / SPG21 Maspardin 复杂型 HSP: 痴呆, 小脑 &锥体外系证,胼胝体发育不良, & 白质异常 (Mast 综合征)
SPG23
(1q24-q32)
Unknown 复杂型HSP:
  • 儿童起病
  • 皮肤色素异常 (白癜风), 少白头, 特殊面容; Lison 综合征
SPG24
(13q14)
Unknown 复杂型 HSP:
  • 儿童起病
  • 痉挛性构音障碍 & 以不同形式表现的假性球麻痹 
SPG25
(6q23-q24.1)
Unknown 在一个意大利家庭中的4名成员中发现:
  • 成年起病 (年龄30-46岁)
  • 由于椎间盘突相关颈、背痛& SPG (注意: 外科手术治疗椎间盘突出改善疼痛并减轻SPG。)
  • 其他: 周围神经病
SPG26
(12p11.1–q14)
Unknown 在一个贝都因家庭的5人中发现复杂型HSP:
  • 儿童起病 (a年龄7-8年)
  • 进行性痉挛性下肢轻瘫伴构音障碍和上肢和下肢的远端肌萎缩
  • 神经传导检查正常
  • 轻度ID, 头颅MRI正常
SPG27
(10q22.1-q24.1)
Unknown 在一个家庭的7名成员中发现单纯型HSP:
  • 成人起病(年龄25-45岁)
  • 在第二个家庭的3人中发现复杂型HSP
  • 儿童起病
  • 共济失调, 构音障碍; ID, 感觉运动神经病,面部畸形, & 矮小
,
DDHD1 / SPG28
(14q21.3-q22.3)
DDHD1 复杂型或单纯型 HSP:
  • 婴儿, 儿童,或青少年起病
  • 轴索神经病, 远端感觉缺失, & 以不同形式呈现的小脑性眼球运动障碍
,
KIF1A / SPG30 KIF1A 复杂型HSP: 远端肌肉消瘦, 扫射性眼球追踪运动, 周围神经病, 轻度小脑体征
SPG32
(14q12-q21)
Unknown 轻度 ID, 脑干神经管缺损, 临床无症状性小脑萎缩  
FA2H / SPG35 Fatty acid 2-hydroxylase 在一个阿曼家族和一个巴基斯坦的家族中发现复杂型:
  • 儿童起病 (年龄6-11岁)
  • 锥体外系征,进行性构音障碍, 痴呆, 癫痫
  • 大脑白质异常 &大脑铁沉积
, ,
PNPLA6 / SPG39 Neuropathy target esterase (NTE) 复杂型HSP: 远端上下肢肌肉消瘦
C19orf12 / SPG43 C19orf12 在马里的2个姐妹中发现:
  • 起病年龄7和12岁
  • 进行性痉挛性截瘫伴手内在肌萎缩;构音障碍(其中一人)
GJC2 / SPG44 Gap junction protein GJA12/GJC2, also known as connexin 47 (Cx47) 复杂型HSP:
  • 起病于10-20岁
  • 轻度 伴ID, 缓慢进展性SPG, 构音障碍, &上肢受累
  • MRI & MR光谱成像与脱髓鞘性白质脑病一致
  • 等位基因w/Pelizeaus-Merzbacher-like disease (PMLD, 早发的脱髓鞘疾病伴眼震, 精神运动发育迟滞, 进行性痉挛状态, 共济失调)
  • GJA/GJC2 变异 p.Ile33Met导致
SPG45
(10q24.3-q25.1)
Unknown 在一个土耳其同胞的5人中发现复杂型HSP:
  • 起病年龄 <1岁
  • ID, 下肢痉挛状态&挛缩
  • 1人有视神经萎缩
  • 2人有摆动性眼球震颤
  • 1人示正常MRI
GBA2 / SPG46 Non-lysosomal glucosylceramidase 痴呆, 白内障,共济失调,胼胝体发育不良
AP4B1 / SPG47 AP-4 complex subunit beta-1 在一个阿拉伯家庭的2名同胞中发现复杂型HSP:
  • 儿童早期发病
  • 缓慢进展性痉挛性下肢轻瘫, ID, & 癫痫
  • 1人有脑室扩大; 另1人胼胝体发育不良&室周脑白质异常
AP5Z1 / SPG48 AP-5 complex subunit zeta-1 见脚注2
TECPR2 / SPG49 Tectonin beta-propeller repeat-containing protein 2 在犹太布哈拉血统的3个明显不相关的家庭的5人中发现复杂型 HSP:
  • 婴儿起病
  • 肌张力降低, 发育迟滞伴严重ID, &  (矮小, brady-小头畸形, 口、面部、牙齿、项部异常)
  • 于儿童期发生的痉挛, 共济失调, &强直步态
  • 其他: 胃食管返流, 复发性窒息发作, 轻度特征 
  • 2人有癫痫
  • 2人MRI示胼胝体发育不良 & 小脑萎缩 
AP4M1 / SPG50 AP-4 complex subunit mu-1 在一个摩洛哥家庭的5人中
  • 婴儿起病
  • 非进展性痉挛性四肢瘫痪伴严重ID
  • 以不同形式呈现拇指内收
  • 脑室扩大, 白质异常&神经影像示不同程度的小脑萎缩
  • 死后尸检示轴索性神经病,神经胶质增生, & 髓鞘减少 
,
AP4E1 / SPG51 AP-4 complex subunit epsilon-1 在一个巴勒斯坦约旦家庭的2名同胞和一个叙利亚家庭的2名同胞中发现复杂型 HSP:
  • 小头畸形,肌张力下降, 神经运动发育迟滞, 痉挛性四肢瘫痪, 明显的ID 伴严重的语言受损,面部特征; 头颅MRI示萎缩和弥漫性白质缺失
  • 以不同形式出现的癫痫
, ,
AP4S1 / SPG52 AP-4 complex subunit sigma-1 在一个叙利亚家庭的5名成员中:
  • 新生儿张力减退 & 严重的 ID
  • 进行性儿童早期出现的SPG, 小头畸形, 矮小, &面部畸形
, ,
VPS37A / SPG53 Vacuolar protein sorting-associated protein 37A 在2个穆斯林阿拉伯家庭的9名成员中发现复杂型HSP: 发育迟滞, 进行性下肢痉挛状态, & 随后进行性累及上肢; 骨骼畸形 (脊柱后凸&鸡胸); 轻至中度ID;不同形式的多毛症&振动觉受损
DDHD2 / SPG54 DDHD2 在4个不相关的家庭的患者中发现复杂型HSP:
  • 起病年龄<2岁
  • 精神运动迟滞, ID,进行性痉挛状态(导致脚挛缩), 胼胝体发育不良, 室周脑白质异常
  • 构音障碍, 吞咽困难, 斜视, &不同形式呈现的视神经发育不良
,
C12orf65 / SPG55 C12orf65, mitochondrial 在日本一家父母的2个兄弟中发现复杂型HSP:
  • 儿童起病
  • 视力降低(伴中心暗点&视盘萎缩), 上肢力量& 灵活性减弱, 上肢肌肉萎缩, &不同形式呈现的运动感觉神经病
,
CYP2U1 / SPG56 Cytochrome P450 2U1 在5个不相关家庭中发现复杂型HSP:
  • 儿童早期发病
  • 上肢受累,上肢肌张力障碍, ID,胼胝体发育不良, 脑白质病, 轴索神经病, &不同形式呈现的基底核钙化
GAD1 / (no SPG designation) Glutamate decarboxylase 1 在一个巴基斯坦家庭同胞中:痉挛性脑瘫&中至重度ID , ,
SPOAN syndrome
(11q13)
Unknown 复杂型HSP: SPG伴视盘萎缩, 神经病变 (SPOAN)
5p15.31-14.1 (no SPG designation) Epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) 复杂型HSP伴致残性感觉性神经病 ,
 

数据从以下引用中编译: from HGNC; , , , complementation group from OMIM; protein from UniProt.

 

痉挛性截瘫: 表型系列来查看OMIM中与此相关的基因

 

ID = 智力损害

 

SPG = 痉挛性截瘫

1.

未知时则显示染色体 

 
 

2.基于在166个不相关的SPG患者(38个隐性遗传,64个显性遗传,64个表现为散发的HSP)和对照的KIAA0415基因分析。

表 3.

遗传性痉挛性截瘫总结 – X-连锁遗传

基因 /位点名称
(染色体位点 1)
蛋白 临床症状 参考文献
L1CAM / SPG1 Neural cell adhesion molecule L1 复杂型 HSP:
  • ID
  • 脑积水, 失语症, &不同形式呈现的拇指内收
PLP1 / SPG2 Myelin proteolipid protein 复杂型 HSP: MRI示中枢神经系统白质异常&不同形式呈现的周围神经病 , , ,
SPG16
(Xq11.2)
Unknown 单纯型; 或复杂型伴运动性失语,视力减退,眼震,轻度ID, 肠/膀胱功能障碍 ,
SLC16A2 / SPG22 Monocarboxylate transport 8 复杂型HSP (Allan-Herndon-Dudley 综合征):
  • 先天性发病
  • 婴儿时期颈部肌肉肌张力减退, ID,构音障碍,共济失调, SPG, 面部异常
, ,
SPG34
(Xq24-q25)
Unknown 单纯型: 起病年龄12-25岁
 

资料从下列引用中编译: from HGNC; , , , complementation group from OMIM; protein from UniProt.

 

痉挛性截瘫: Phenotypic Series to view genes associated with this in OMIM.

 

ID = 智力损害

 

SPG = 痉挛性截瘫

1.

未知时则显示染色体

Table 4.

遗传性痉挛性截瘫总结 – 母系(线粒体) 遗传

基因/位点名称 (染色体位点 1) 蛋白 临床症状 参考文献
No SPG designation Mitochondrial MT-ATP6 进行性痉挛性截瘫:
  • 成年起病
  • 轻至重度症状
  • 轴索神经病, 晚发性痴呆, &不同形式呈现的心肌病 
 

数据从下列引用中编译: from HGNC; , , , complementation group from OMIM; protein from UniProt.

评估策略

建立患者痉挛性截瘫原因的评估包括:

  • 临床评估. 完整的病史, 神经病史, 和体格检查
  • 家族史.包含3代家族史并注意其他可能患有HSP的亲属。家族成员中相关信息的收集可以通过对这些个体的直接检查或回顾他们的医学检查结果包括神经影像,神经病理,神经系统体格检查和
  • 分子遗传学检测, 对于许多HSP患者临床可行
    • 其中一个基因检测策略是基于下列一些因素(但不仅限于这些因素)进行连续单
      • 遗传模式
      • 临床发现 (如:起病年龄, 附加临床特征, MRI结果)
      • 患病率(如:SPG4 (编码spastin), 单一引起显性遗传HSP的最常见原因,它导致的HSP约占个体的30 to 40%)
      • 患者种族
    • 另一个基因检测策略是用包1 ,表2,表3,和表4基因的。注意:检测的基因和表型靶向检测方法在不同的实验室和随着时间推移变化。

遗传咨询

遗传咨询提供给个体和家庭关于家族遗传病的性质、遗传和含义的信息,帮助他们知情并做出自己的决定。下面的章节处理基因风险评估和应用家族史和基因检测来证实家族成员的基因状态。这部分并不是处理个体所面临的所有的个人、文化或种族问题 ,也不是替代专业的遗传咨询。—ED.

遗传方式

HSP可以,方式遗传,这取决于一个家族中的基因亚型。

家庭成员患病风险 — 常染色体显性HSP

父母 

同胞

  • 同胞患病风险取决于先证者父母的基因状态。
  • 如果的父母一方有一个突变的, 则同胞遗传这个突变等位基因概率为50%。
  • 同一家庭不同成员、拥有相同的不同家庭、或不同HSP基因型之间,起病年龄和病变程度高度不相同。

子女。HSP患者的每个子女都有50%的风险会遗传.

家庭成员患病风险 — 常染色体隐性HSP

父母 

  • 个体的父母是肯定杂合子,因此携带一个突变.
  • 杂合子(携带者)无症状.

同胞 

  • 怀孕中,每个同胞有25%的几率, 50%的几率成为无症状,25%的几率不受累且不是携带者。
  • 个体的未受累同胞有2/3的几率是.
  • 杂合子无症状.

子女 . HSP个体的子女是肯定杂合子(携带者),其带有一个突变的致HSP的

家庭成员的患病风险— X-连锁HSP

父母 

同胞 

  • 其同胞患病风险取决于 母亲的基因状态。
  • 如果母亲有一个,则每次怀孕传递此变异的几率是50%。遗传此变异的儿子将; 遗传此变异的女儿是携带者并不受累。
  • 同一家庭成员、拥有相同的不同家庭、或HSP不同基因型之间的起病年龄, ,和受累程度均不可预测。

子女. 男性的所有女儿均是携带者;他的儿子均不会受累。

的其他家庭成员 . 先证者的姨妈以及他们的子女有成为携带者或的风险 (取决于他们的年龄, 家庭关系, 和先证者母亲的状态)

遗传咨询相关问题

当一个患者有HSP的所有症状体征但却无其他相似亲戚是需谨慎。这些个体可能被诊断为原发性侧索硬化(PLS)。但这些没有已知HSP家族史的患者可能是HSP (并因此传递给下一代的几率低), 也可能是HSP, 降低的HSP,一个 , 非生物学父亲, 或者是环境导致。

计划生育. 最佳决定基因风险、阐明状态、并讨论产前检查可行性的时机是在怀孕前。

DNA银行是贮存DNA以备将来之需(典型地从白细胞中提取)。因为检测方法和我们对基因、等位基因变异和疾病的认识很可能会随着时间发展逐步深入,所以应考虑患者的DNA银行。

产前检查和植入前遗传学诊断

一旦家庭中成员被确认,对增高患病风险的怀孕需要进行产前检查和痉挛性截瘫的

资源

GeneReviews staff has selected the following disease-specific and/orumbrella support organizations and/or registries for the benefit of individualswith this disorder and their families. GeneReviews is not responsible for theinformation provided by other organizations. For information on selectioncriteria, click here.

  • National Institute of Neurological Disorders and Stroke (NINDS)
    PO Box 5801
    Bethesda MD 20824
    Phone: 800-352-9424 (toll-free); 301-496-5751; 301-468-5981 (TTY)
  • Spastic Paraplegia Foundation, Inc.
    7700 Leesburg Pike
    Ste 123
    Falls Church VA 22043
    Phone: 877-773-4483 (toll-free)
    Email: information@sp-foundation.org

治疗

对症治疗

目前,没有能阻止或逆转HSP神经变性的特殊治疗。治疗是针对减轻症状和改善平衡、力量和灵活性的。 目前的建议:

  • 推荐改善心血管功能,保持并改善肌肉力量和步态,并减轻痉挛状态的日常物理治疗。

  • 职业疗法,辅助行走设备和踝-足矫形器经常被使用。

  • 减轻肌肉痉挛状态的药物 (如: 巴氯芬® [口服或鞘内注射], 替扎尼定, 丹曲林, 保妥适®注射) 和减轻尿急的药(如: 奥昔布宁)

防止继发性并发症 

推荐改善心血管功能,保持并改善肌肉力量和步态,并减轻痉挛状态的日常物理治疗。

监控

患者需做周期性的评估(每年一次或根据需要),由神经病学医生和物理治疗师评估疾病进展并制定治疗策略以最大可能保留行走功能和减轻症状。

需避免的药剂/环境

尽可能避免暴露于药物或化学物质。

对有患病风险的亲属的评估

遗传咨询中对有患病风险亲属进行检测以达到目的的部分。

孕期管理

HSP症状通常不会在怀孕期间有显著变化(尽管,如果像巴氯芬这样的药物在孕期减量或停服会加重痉挛状态)。总的来说,单纯型HSP不会增加怀孕和分娩的风险 ,也不会增加产科麻醉风险。

处于研究阶段的治疗方法

搜索ClinicalTrials.gov 来获取更广泛的疾病临床研究信息。注意:也许会没有没有HSP的临床资料。

参考文献

Literature Cited

  • Abou Jamra R, Philippe O, Raas-Rothschild A, Eck SH, Graf E, Buchert R, Borck G, Ekici A, Brockschmidt FF, Nöthen MM, Munnich A, Strom TM, Reis A, Colleaux L. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am J Hum Genet. 2011;88:788 - 95. [PMC free article: PMC3113253] [PubMed: 21620353]
  • Alazami AM, Adly N, Al Dhalaan H, Alkuraya FS. A nullimorphic ERLIN2 mutation defines a complicated hereditary spastic paraplegia locus (SPG18). Neurogenetics. 2011;12:333 - 6. [PMC free article: PMC3215864] [PubMed: 21796390]
  • Allan W, Herndon CN, Dudley FC. Some examples of the inheritance of mental deficiency: apparently sex-linked idiocy and microcephaly. Am J Ment Defic. 1944;48:325 - 34.
  • Al-Saif A, Bohlega S, Al-Mohanna F. Loss of ERLIN2 function leads to juvenile primary lateral sclerosis. Ann Neurol. 2012;72:510 - 6. [PubMed: 23109145]
  • Al-Yahyaee S, Al-Gazali LI, De Jonghe P, Al-Barwany H, Al-Kindi M, De Vriendt E, Chand P, Koul R, Jacob PC, Gururaj A, Sztriha L, Parrado A, Van Broeckhoven C, Bayoumi RA. A novel locus for hereditary spastic paraplegia with thin corpus callosum and epilepsy. Neurology. 2006;66:1230 - 4. [PubMed: 16636240]
  • Antonicka H, Ostergaard E, Sasarman F, Weraarpachai W, Wibrand F, Pedersen AM, Rodenburg RJ, van der Knaap MS, Smeitink JA, Chrzanowska-Lightowlers ZM, Shoubridge EA. Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. Am J Hum Genet. 2010;87:115 - 22. [PMC free article: PMC2896764] [PubMed: 20598281]
  • Auer-Grumbach M, Schlotter-Weigel B, Lochmüller H, Strobl-Wildemann G, Auer-Grumbach P, Fischer R, Offenbacher H, Zwick EB, Robl T, Hartl G, Hartung HP, Wagner K, Windpassinger C., Austrian Peripheral Neuropathy Study Group. Phenotypes of the N88S Berardinelli-Seip congenital lipodystrophy 2 mutation. Ann Neurol. 2005;57:415 - 24. [PubMed: 15732094]
  • Beetz C, Schüle R, Deconinck T, Tran-Viet KN, Zhu H, Kremer BP, Frints SG, van Zelst-Stams WA, Byrne P, Otto S, Nygren AO, Baets J, Smets K, Ceulemans B, Dan B, Nagan N, Kassubek J, Klimpe S, Klopstock T, Stolze H, Smeets HJ, Schrander-Stumpel CT, Hutchinson M, van de Warrenburg BP, Braastad C, Deufel T, Pericak-Vance M, Schöls L, de Jonghe P, Züchner S. REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain. 2008;131:1078 - 86. [PMC free article: PMC2841798] [PubMed: 18321925]
  • Behan WM, Maia M. Strumpell's familial spastic paraplegia: genetics and neuropathology. J Neurol Neurosurg Psychiatry. 1974;37:8 - 20. [PMC free article: PMC494557] [PubMed: 4813430]
  • Bialer MG, Lawrence L, Stevenson RE, Silverberg G, Williams MK, Arena JF, Lubs HA, Schwartz CE. Allan-Herndon-Dudley syndrome: clinical and linkage studies on a second family. Am J Med Genet. 1992;43:491 - 7. [PubMed: 1605231]
  • Bian X, Klemm RW, Liu TY, Zhang M, Sun S, Sui X, Liu X, Rapoport TA, Hu J. Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proc Natl Acad Sci U S A. 2011;108:3976 - 81. [PMC free article: PMC3054032] [PubMed: 21368113]
  • Biancheri R, Ciccolella M, Rossi A, Tessa A, Cassandrini D, Minetti C, Santorelli FM. White matter lesions in spastic paraplegia with mutations in SPG5/CYP7B1. Neuromuscul Disord. 2009;19:62 - 5. [PubMed: 19187859]
  • Blumen SC, Bevan S, Abu-Mouch S, Negus D, Kahana M, Inzelberg R, Mazarib A, Mahamid A, Carasso RL, Slor H, Withers D, Nisipeanu P, Navon R, Reid E. A locus for complicated hereditary spastic paraplegia maps to chromosome 1q24-q32. Ann Neurol. 2003;54:796 - 803. [PubMed: 14681889]
  • Blumkin L, Lerman-Sagie T, Lev D, Yosovich K, Leshinsky-Silver E. A new locus (SPG47) maps to 1p13.2-1p12 in an Arabic family with complicated autosomal recessive hereditary spastic paraplegia and thin corpus callosum. J Neurol Sci. 2011;305:67 - 70. [PubMed: 21440262]
  • Bouhouche A, Benomar A, Bouslam N, Chkili T, Yahyaoui M. Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. J Med Genet. 2006b;43:441 - 3. [PMC free article: PMC2564519] [PubMed: 16399879]
  • Bouhouche A, Benomar A, Bouslam N, Ouazzani R, Chkili T, Yahyaoui M. Autosomal recessive mutilating sensory neuropathy with spastic paraplegia maps to chromosome 5p15.31-14.1. Eur J Hum Genet. 2006a;14:249 - 52. [PubMed: 16333315]
  • Boukhris A, Feki I, Elleuch N, Miladi MI, Boland-Augé A, Truchetto J, Mundwiller E, Jezequel N, Zelenika D, Mhiri C, Brice A, Stevanin G. A new locus (SPG46) maps to 9p21.2-q21.12 in a Tunisian family with a complicated autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum. Neurogenetics. 2010;11:441 - 8. [PubMed: 20593214]
  • Bouslam N, Benomar A, Azzedine H, Bouhouche A, Namekawa M, Klebe S, Charon C, Durr A, Ruberg M, Brice A, Yahyaoui M, Stevanin G. Mapping of a new form of pure autosomal recessive spastic paraplegia (SPG28). Ann Neurol. 2005;57:567 - 71. [PubMed: 15786464]
  • Bross P, Naundrup S, Hansen J, Nielsen MN, Christensen JH, Kruhøffer M, Palmfeldt J, Corydon TJ, Gregersen N, Ang D, Georgopoulos C, Nielsen KL. The Hsp60-(p.V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in vitro and in vivo. J Biol Chem. 2008;283:15694 - 700. [PMC free article: PMC3259655] [PubMed: 18400758]
  • Cambi F, Tang XM, Cordray P, Fain PR, Keppen LD, Barker DF. Refined genetic mapping and proteolipid protein mutation analysis in X-linked pure hereditary spastic paraplegia. Neurology. 1996;46:1112 - 7. [PubMed: 8780101]
  • Charvin D, Cifuentes-Diaz C, Fonknechten N, Joshi V, Hazan J, Melki J, Betuing S. Mutations of SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized in the nucleus. Hum Mol Genet. 2003;12:71 - 8. [PubMed: 12490534]
  • Chen S, Song C, Guo H, Xu P, Huang W, Zhou Y, Sun J, Li CX, Du Y, Li X, Liu Z, Geng D, Maxwell PH, Zhang C, Wang Y. Distinct novel mutations affecting the same base in the NIPA1 gene cause autosomal dominant hereditary spastic paraplegia in two Chinese families. Hum Mutat. 2005;25:135 - 41. [PubMed: 15643603]
  • Criscuolo C, Filla A, Coppola G, Rinaldi C, Carbone R, Pinto S, Wang Q, de Leva MF, Salvatore E, Banfi S, Brunetti A, Quarantelli M, Geschwind DH, Pappatà S, De Michele G. Two novel CYP7B1 mutations in Italian families with SPG5: a clinical and genetic study. J Neurol. 2009;256:1252 - 7. [PubMed: 19363635]
  • Crosby AH, Patel H, Patton MA, Proukakis C, Cross H. Spartin, the Troyer syndrome gene, suggests defective endosomal trafficking underlies some forms of hereditary spastic paraplegia. Am J Hum Genet. 2002;71:516.
  • Cross HE, McKusick VA. The Troyer syndrome. A recessive form of spastic paraplegia with distal muscle wasting. Arch Neurol. 1967;16:473 - 85. [PubMed: 6022528]
  • De Michele G, De Fusco M, Cavalcanti F, Filla A, Marconi R, Volpe G, Monticelli A, Ballabio A, Casari G, Cocozza S. A new locus for autosomal recessive hereditary spastic paraplegia maps to chromosome 16q24.3. Am J Hum Genet. 1998;63:135 - 9. [PMC free article: PMC1377251] [PubMed: 9634528]
  • Dell'Angelica EC, Mullins C, Bonifacino JS. AP-4, a novel protein complex related to clathrin adaptors. J Biol Chem. 1999;274:7278 - 85. [PubMed: 10066790]
  • Dick KJ, Al-Mjeni R, Baskir W, Koul R, Simpson MA, Patton MA, Raeburn S, Crosby AH. A novel locus for an autosomal recessive hereditary spastic paraplegia (SPG35) maps to 16q21-q23. Neurology. 2008 Jul 22;71:248 - 52. [PubMed: 18463364]
  • Dick KJ, Eckhardt M, Paisán-Ruiz C, Alshehhi AA, Proukakis C, Sibtain NA, Maier H, Sharifi R, Patton MA, Bashir W, Koul R, Raeburn S, Gieselmann V, Houlden H, Crosby AH. Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat. 2010;31:E1251 - 60. [PubMed: 20104589]
  • Du J, Hu YC, Tang BS, Chen C, Luo YY, Zhan ZX, Zhao GH, Jiang H, Xia K, Shen L. Expansion of the phenotypic spectrum of SPG6 caused by mutation in NIPA1. Clin Neurol Neurosurg. 2011;113:480 - 2. [PubMed: 21419568]
  • Dursun U, Koroglu C, Kocasoy Orhan E, Ugur SA, Tolun A. Autosomal recessive spastic paraplegia (SPG45) with mental retardation maps to 10q24.3-q25.1. Neurogenetics. 2009;10:325 - 31. [PubMed: 19415352]
  • Evans KJ, Gomes ER, Reisenweber SM, Gundersen GG, Lauring BP. Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. J Cell Biol. 2005;168:599 - 606. [PMC free article: PMC2171748] [PubMed: 15716377]
  • Fichera M, Lo Giudice M, Falco M, Sturnio M, Amata S, Calabrese O, Bigoni S, Calzolari E, Neri M. Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia. Neurology. 2004;63:1108 - 10. [PubMed: 15452312]
  • Fink JK, Sharp GB, Lange BM, Wu CB, Haley T, Otterud B, Peacock M, Leppert M. Autosomal dominant, familial spastic paraplegia, type I: clinical and genetic analysis of a large North American family. Neurology. 1995a;45:325 - 31. [PubMed: 7854534]
  • Fink JK, Wu CT, Jones SM, Sharp GB, Lange BM, Lesicki A, Reinglass T, Varvil T, Otterud B, Leppert M. Autosomal dominant familial spastic paraplegia: tight linkage to chromosome 15q. Am J Hum Genet. 1995b;56:188 - 92. [PMC free article: PMC1801321] [PubMed: 7825577]
  • Fink JK. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. 2013;126:307 - 28. [PMC free article: PMC4045499] [PubMed: 23897027]
  • Fontaine B, Davoine CS, Dürr A, Paternotte C, Feki I, Weissenbach J, Hazan J, Brice A. A new locus for autosomal dominant pure spastic paraplegia, on chromosome 2q24-q34. Am J Hum Genet. 2000;66:702 - 7. [PMC free article: PMC1288122] [PubMed: 10677329]
  • Garner CC, Garner A, Huber G, Kozak C, Matus A. Molecular cloning of microtubule-associated protein 1 (MAP1A) and microtubule-associated protein 5 (MAP1B): identification of distinct genes and their differential expression in developing brain. J Neurochem. 1990;55:146 - 54. [PubMed: 2355215]
  • Hanein S, Dürr A, Ribai P, Forlani S, Leutenegger AL, Nelson I, Babron MC, Elleuch N, Depienne C, Charon C, Brice A, Stevanin G. A novel locus for autosomal dominant "uncomplicated" hereditary spastic paraplegia maps to chromosome 8p21.1-q13.3. Hum Genet. 2007;122:261 - 73. [PubMed: 17605047]
  • Hanein S, Martin E, Boukhris A, Byrne P, Goizet C, Hamri A, Benomar A, Lossos A, Denora P, Fernandez J, Elleuch N, Forlani S, Durr A, Feki I, Hutchinson M, Santorelli FM, Mhiri C, Brice A, Stevanin G. Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am J Hum Genet. 2008;82:992 - 1002. [PMC free article: PMC2427184] [PubMed: 18394578]
  • Hansen JJ, Dürr A, Cournu-Rebeix I, Georgopoulos C, Ang D, Nielsen MN, Davoine CS, Brice A, Fontaine B, Gregersen N, Bross P. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet. 2002;70:1328 - 32. [PMC free article: PMC447607] [PubMed: 11898127]
  • Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983;1:1151 - 5. [PubMed: 6133167]
  • Hazan J, Fontaine B, Bruyn RP, Lamy C, van Deutekom JC, Rime CS, Dürr A, Melki J, Lyon-Caen O, Agid Y, Munnich A, Padberg GW, de Recondo J, Frants RR, Brice A, Welssenbach J. Linkage of a new locus for autosomal dominant familial spastic paraplegia to chromosome 2p. Hum Mol Genet. 1994;3:1569 - 73. [PubMed: 7833913]
  • Hazan J, Lamy C, Melki J, Munnich A, de Recondo J, Weissenbach J. Autosomal dominant familial spastic paraplegia is genetically heterogeneous and one locus maps to chromosome 14q. Nat Genet. 1993;5:163 - 7. [PubMed: 8252041]
  • Hedera P, DiMauro S, Bonilla E, Wald J, Eldevik OP, Fink JK. Phenotypic analysis of autosomal dominant hereditary spastic paraplegia linked to chromosome 8q. Neurology. 1999a;53:44 - 50. [PubMed: 10408535]
  • Hedera P, Rainier S, Alvarado D, Zhao X, Williamson J, Otterud B, Leppert M, Fink JK. Novel locus for autosomal dominant hereditary spastic paraplegia, on chromosome 8q. Am J Hum Genet. 1999b;64:563 - 9. [PMC free article: PMC1377766] [PubMed: 9973294]
  • Hentati A, Pericak-Vance MA, Hung WY, Belal S, Laing N, Boustany RM, Hentati F, Ben Hamida M, Siddique T. Linkage of 'pure' autosomal recessive familial spastic paraplegia to chromosome 8 markers and evidence of genetic locus heterogeneity. Hum Mol Genet. 1994a;3:1263 - 7. [PubMed: 7987300]
  • Hentati A, Pericak-Vance MA, Lennon F, Wasserman B, Hentati F, Juneja T, Angrist MH, Hung WY, Boustany RM, Bohlega S. Iqbal1 Z, Huether CH, Hamida MB, Siddique T. Linkage of a locus for autosomal dominant familial spastic paraplegia to chromosome 2p markers. Hum Mol Genet. 1994b;3:1867 - 71. [PubMed: 7849714]
  • Hirst J, Bright NA, Rous B, Robinson MS. Characterization of a fourth adaptor-related protein complex. Mol Biol Cell. 1999;10:2787 - 802. [PMC free article: PMC25515] [PubMed: 10436028]
  • Hodgkinson CA, Bohlega S, Abu-Amero SN, Cupler E, Kambouris M, Meyer BF, Bharucha VA. A novel form of autosomal recessive pure hereditary spastic paraplegia maps to chromosome 13q14. Neurology. 2002;59:1905 - 9. [PubMed: 12499481]
  • Hudson LD. Pelizaeus-Merzbacher disease and spastic paraplegia type 2: two faces of myelin loss from mutations in the same gene. J Child Neurol. 2003;18:616 - 24. [PubMed: 14572140]
  • Hughes CA, Byrne PC, Webb S, McMonagle P, Patterson V, Hutchinson M, Parfrey NA. SPG15, a new locus for autosomal recessive complicated HSP on chromosome 14q. Neurology. 2001;56:1230 - 3. [PubMed: 11342696]
  • Jouet M, Rosenthal A, Armstrong G, MacFarlane J, Stevenson R, Paterson J, Metzenberg A, Ionasescu V, Temple K, Kenwrick S. X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nat Genet. 1994;7:402 - 7. [PubMed: 7920659]
  • Klebe S, Azzedine H, Durr A, Bastien P, Bouslam N, Elleuch N, Forlani S, Charon C, Koenig M, Melki J, Brice A, Stevanin G. Autosomal recessive spastic paraplegia (SPG30) with mild ataxia and sensory neuropathy maps to chromosome 2q37.3. Brain. 2006;129:1456 - 62. [PubMed: 16434418]
  • Kobayashi H, Hoffman EP, Marks HG. The rumpshaker mutation in spastic paraplegia. Nat Genet. 1994;7:351 - 2. [PubMed: 7522741]
  • Kruer MC, Paisán-Ruiz C, Boddaert N, Yoon MY, Hama H, Gregory A, Malandrini A, Woltjer RL, Munnich A, Gobin S, Polster BJ, Palmeri S, Edvardson S, Hardy J, Houlden H, Hayflick SJ. Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol. 2010;68:611 - 8. [PubMed: 20853438]
  • Lin P, Li J, Liu Q, Mao F, Li J, Qiu R, Hu H, Song Y, Yang Y, Gao G, Yan C, Yang W, Shao C, Gong Y. A missense mutation in SLC33A1, which encodes the acetyl-CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42). Am J Hum Genet. 2008;83:752 - 9. [PMC free article: PMC2668077] [PubMed: 19061983]
  • Lin P, Mao F, Liu Q, Shao C, Yan C, Gong Y. Prenatal diagnosis of autosomal dominant hereditary spastic paraplegia (SPG42) caused by SLC33A1 mutation in a Chinese kindred. Prenat Diagn. 2010;30:485 - 6. [PubMed: 20306460]
  • Lu J, Rashid F, Byrne PC. The hereditary spastic paraplegia protein spartin localises to mitochondria. J Neurochem. 2006;98:1908 - 19. [PubMed: 16945107]
  • Lynex CN, Carr IM, Leek JP, Achuthan R, Mitchell S, Maher ER, Woods CG, Bonthon DT, Markham AF. Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders. BMC Neurol. 2004;4:20. [PMC free article: PMC544830] [PubMed: 15571623]
  • Macedo-Souza LI, Kok F, Santos S, Amorim SC, Starling A, Nishimura A, Lezirovitz K, Lino AM, Zatz M. Spastic paraplegia, optic atrophy, and neuropathy is linked to chromosome 11q13. Ann Neurol. 2005;57:730 - 7. [PubMed: 15852396]
  • Macedo-Souza LI, Kok F, Santos S, Licinio L, Lezirovitz K, Nascimento RM, Bueno C, Martyn M, Leão EK, Zatz M. Reevaluation of a large family defines a new locus for X-linked recessive pure spastic paraplegia (SPG34) on chromosome Xq25. Neurogenetics. 2008;9:225 - 6. [PubMed: 18463901]
  • Mannan AU, Krawen P, Sauter SM, Boehm J, Chronowska A, Paulus W, Neesen J, Engel W. ZFYVE27 (SPG33), a novel spastin-binding protein, is mutated in hereditary spastic paraplegia. Am J Hum Genet. 2006;79:351 - 7. [PMC free article: PMC1559503] [PubMed: 16826525]
  • Martínez Murillo F, Kobayashi H, Pegoraro E, Galluzzi G, Creel G, Mariani C, Farina E, Ricci E, Alfonso G, Pauli RM, Hoffman EP. Genetic localization of a new locus for recessive familial spastic paraparesis to 15q13-15. Neurology. 1999;53:50 - 6. [PubMed: 10408536]
  • Martinez-Lage M, Molina-Porcel L, Falcone D, McCluskey L, Lee VM, Van Deerlin VM, Trojanowski JQ. TDP-43 pathology in a case of hereditary spastic paraplegia with a NIPA1/SPG6 mutation. Acta Neuropathol. 2012;124:285 - 91. [PMC free article: PMC3361549] [PubMed: 22302102]
  • Marx J. Alzheimer's research moves to mice. Science. 1991;253:266 - 7. [PubMed: 1907022]
  • McHale DP, Mitchell S, Bundey S, Moynihan L, Campbell DA, Woods CG, Lench NJ, Mueller RF, Markham AF. A gene for autosomal recessive symmetrical spastic cerebral palsy maps to chromosome 2q24-25. Am J Hum Genet. 1999;64:526 - 32. [PMC free article: PMC1377761] [PubMed: 9973289]
  • McMonagle P, Webb S, Hutchinson M. The prevalence of "pure" autosomal dominant hereditary spastic paraparesis in the island of Ireland. J Neurol Neurosurg Psychiatry. 2002;72:43 - 6. [PMC free article: PMC1737699] [PubMed: 11784824]
  • Meijer IA, Cossette P, Roussel J, Benard M, Toupin S, Rouleau GA. A novel locus for pure recessive hereditary spastic paraplegia maps to 10q22.1-10q24.1. Ann Neurol. 2004;56:579 - 82. [PubMed: 15455396]
  • Meilleur KG, Traoré M, Sangaré M, Britton A, Landouré G, Coulibaly S, Niaré B, Mochel F, La Pean A, Rafferty I, Watts C, Shriner D, Littleton-Kearney MT, Blackstone C, Singleton A, Fischbeck KH. Hereditary spastic paraplegia and amyotrophy associated with a novel locus on chromosome 19. Neurogenetics. 2010;11:313 - 8. [PMC free article: PMC2891134] [PubMed: 20039086]
  • Mitchell S, Bundey S. Symmetry of neurological signs in Pakistani patients with probable inherited spastic cerebral palsy. Clin Genet. 1997;51:7 - 14. [PubMed: 9084927]
  • Montenegro G, Rebelo AP, Connell J, Allison R, Babalini C, D'Aloia M, Montieri P, Schüle R, Ishiura H, Price J, Strickland A, Gonzalez MA, Baumbach-Reardon L, Deconinck T, Huang J, Bernardi G, Vance JM, Rogers MT, Tsuji S, De Jonghe P, Pericak-Vance MA, Schöls L, Orlacchio A, Reid E, Züchner S. Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. J Clin Invest. 2012;122:538 - 44. [PMC free article: PMC3266795] [PubMed: 22232211]
  • Moreno-De-Luca A, Helmers SL, Mao H, Burns TG, Melton AM, Schmidt KR, Fernhoff PM, Ledbetter DH, Martin CL. Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal recessive cerebral palsy syndrome with microcephaly and intellectual disability. J Med Genet. 2011;48:141 - 4. [PMC free article: PMC3150730] [PubMed: 20972249]
  • Muglia M, Criscuolo C, Magariello A, De Michele G, Scarano V, D'Adamo P, Ambrosio G, Gabriele AL, Patitucci A, Mazzei R, Conforti FL, Sprovieri T, Morgante L, Epifanio A, La Spina P, Valentino P, Gasparini P, Filla A, Quattrone A. Narrowing of the critical region in autosomal recessive spastic paraplegia linked to the SPG5 locus. Neurogenetics. 2004;5:49 - 54. [PubMed: 14658060]
  • Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, Hosseini M, Behjati F, Haas S, Jamali P, Zecha A, Mohseni M, Püttmann L, Vahid LN, Jensen C, Moheb LA, Bienek M, Larti F, Mueller I, Weissmann R, Darvish H, Wrogemann K, Hadavi V, Lipkowitz B, Esmaeeli-Nieh S, Wieczorek D, Kariminejad R, Firouzabadi SG, Cohen M, Fattahi Z, Rost I, Mojahedi F, Hertzberg C, Dehghan A, Rajab A, Banavandi MJ, Hoffer J, Falah M, Musante L, Kalscheuer V, Ullmann R, Kuss AW, Tzschach A, Kahrizi K, Ropers HH. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature. 2011;478:57 - 63. [PubMed: 21937992]
  • Orlacchio A, Kawarai T, Gaudiello F, St George-Hyslop PH, Floris R, Bernardi G. New locus for hereditary spastic paraplegia maps to chromosome 1p31.1-1p21.1. Ann Neurol. 2005;58:423 - 9. [PubMed: 16130112]
  • Orlacchio A, Patrono C, Gaudiello F, Rocchi C, Moschella V, Floris R, Bernardi G, Kawarai T. Silver syndrome variant of hereditary spastic paraplegia: A locus to 4p and allelism with SPG4. Neurology. 2008;70:1959 - 66. [PubMed: 18401025]
  • Orthmann-Murphy JL, Salsano E, Abrams CK, Bizzi A, Uziel G, Freidin MM, Lamantea E, Zeviani M, Scherer SS, Pareyson D. Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain. 2009;132:426 - 38. [PMC free article: PMC2640216] [PubMed: 19056803]
  • Oz-Levi D, Ben-Zeev B, Ruzzo EK, Hitomi Y, Gelman A, Pelak K, Anikster Y, Reznik-Wolf H, Bar-Joseph I, Olender T, Alkelai A, Weiss M, Ben-Asher E, Ge D, Shianna KV, Elazar Z, Goldstein DB, Pras E, Lancet D. Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am J Hum Genet. 2012;91:1065 - 72. [PMC free article: PMC3516605] [PubMed: 23176824]
  • Patel H, Cross H, Proukakis C, Hershberger R, Bork P, Ciccarelli FD, Patton MA, McKusick VA, Crosby AH. SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nat Genet. 2002;31:347 - 8. [PubMed: 12134148]
  • Patel H, Hart PE, Warner TT, Houlston RS, Patton MA, Jeffery S, Crosby AH. The Silver syndrome variant of hereditary spastic paraplegia maps to chromosome 11q12-q14, with evidence for genetic heterogeneity within this subtype. Am J Hum Genet. 2001;69:209 - 15. [PMC free article: PMC1226036] [PubMed: 11389484]
  • Paternotte C, Rudnicki D, Fizames C, Davoine CS, Mavel D, Dürr A, Samson D, Marquette C, Muselet D, Vega-Czarny N, Drouot N, Voit T, Fontaine B, Gyapay G, Auburger G, Weissenbach J, Hazan J. Quality assessment of whole genome mapping data in the refined familial spastic paraplegia interval on chromosome 14q. Genome Res. 1998;8:1216 - 27. [PMC free article: PMC310792] [PubMed: 9847083]
  • Proukakis C, Cross H, Patel H, Patton MA, Valentine A, Crosby AH. Troyer syndrome revisited. A clinical and radiological study of a complicated hereditary spastic paraplegia. J Neurol. 2004;251:1105 - 10. [PubMed: 15372254]
  • Rainier S, Bui M, Mark E, Thomas D, Tokarz D, Ming L, Delaney C, Richardson RJ, Albers JW, Matsunami N, Stevens J, Coon H, Leppert M, Fink JK. Neuropathy target esterase gene mutations cause motor neuron disease. Am J Hum Genet. 2008;82:780 - 5. [PMC free article: PMC2427280] [PubMed: 18313024]
  • Rainier S, Chai JH, Tokarz D, Nicholls RD, Fink JK. NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). Am J Hum Genet. 2003;73:967 - 71. [PMC free article: PMC1180617] [PubMed: 14508710]
  • Reid E, Dearlove AM, Osborn O, Rogers MT, Rubinsztein DC. A locus for autosomal dominant "pure" hereditary spastic paraplegia maps to chromosome 19q13. Am J Hum Genet. 2000;66:728 - 32. [PMC free article: PMC1288126] [PubMed: 10677333]
  • Reid E, Dearlove AM, Rhodes M, Rubinsztein DC. A new locus for autosomal dominant "pure" hereditary spastic paraplegia mapping to chromosome 12q13, and evidence for further genetic heterogeneity. Am J Hum Genet. 1999;65:757 - 63. [PMC free article: PMC1377983] [PubMed: 10441583]
  • Ribai P, Stevanin G, Bouslam N, Pontier B, Nelson I, Fontaine B, Dussert C, Charon C, Durr A, Brice A. A new phenotype linked to SPG27 and refinement of the critical region on chromosome. J Neurol. 2006;253:714 - 9. [PubMed: 16511635]
  • Roll-Mecak A, Vale RD. The Drosophila homologue of the hereditary spastic paraplegia protein, spastin, severs and disassembles microtubules. Curr Biol. 2005;15:650 - 5. [PubMed: 15823537]
  • Saugier-Veber P, Munnich A, Bonneau D, Rozet JM, Le Merrer M, Gil R, Boespflug-Tanguy O. X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus. Nat Genet. 1994;6:257 - 62. [PubMed: 8012387]
  • Schlipf NA, Beetz C, Schüle R, Stevanin G, Erichsen AK, Forlani S, Zaros C, Karle K, Klebe S, Klimpe S, Durr A, Otto S, Tallaksen CM, Riess O, Brice A, Bauer P, Schöls L. A total of 220 patients with autosomal dominant spastic paraplegia do not display mutations in the SLC33A1 gene (SPG42). Eur J Hum Genet. 2010;18:1065 - 7. [PMC free article: PMC2987419] [PubMed: 20461110]
  • Schüle R, Bonin M, Dürr A, Forlani S, Sperfeld AD, Klimpe S, Mueller JC, Seibel A, van de Warrenburg BP, Bauer P, Schöls L. Autosomal dominant spastic paraplegia with peripheral neuropathy maps to chr12q23-24. Neurology. 2009;72:1893 - 8. [PubMed: 19357379]
  • Schuurs-Hoeijmakers JH, Geraghty MT, Kamsteeg EJ, Ben-Salem S, de Bot ST, Nijhof B, van de Vondervoort II, van der Graaf M, Nobau AC, Otte-Höller I, Vermeer S, Smith AC, Humphreys P, Schwartzentruber J., FORGE Canada Consortium. Ali BR, Al-Yahyaee SA, Tariq S, Pramathan T, Bayoumi R, Kremer HP, van de Warrenburg BP, van den Akker WM, Gilissen C, Veltman JA, Janssen IM, Vulto-van Silfhout AT, van der Velde-Visser S, Lefeber DJ, Diekstra A, Erasmus CE, Willemsen MA, Vissers LE, Lammens M, van Bokhoven H, Brunner HG, Wevers RA, Schenck A, Al-Gazali L, de Vries BB, de Brouwer AP. Mutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of complex hereditary spastic paraplegia. Am J Hum Genet. 2012;91:1073 - 81. [PMC free article: PMC3516595] [PubMed: 23176823]
  • Schwarz GA, Liu CN. Hereditary (familial) spastic paraplegia; further clinical and pathologic observations. AMA Arch Neurol Psychiatry. 1956;75:144 - 62. [PubMed: 13282534]
  • Sedel F, Fontaine B, Saudubray JM, Lyon-Caen O. Hereditary spastic paraparesis in adults associated with inborn errors of metabolism: a diagnostic approach. J Inherit Metab Dis. 2007;30:855 - 64. [PubMed: 17957490]
  • Seri M, Cusano R, Forabosco P, Cinti R, Caroli F, Picco P, Bini R, Morra VB, De Michele G, Lerone M, Silengo M, Pela I, Borrone C, Romeo G, Devoto M. Genetic mapping to 10q23.3-q24.2, in a large Italian pedigree, of a new syndrome showing bilateral cataracts, gastroesophageal reflux, and spastic paraparesis with amyotrophy. Am J Hum Genet. 1999;64:586 - 93. [PMC free article: PMC1377769] [PubMed: 9973297]
  • Shimazaki H, Takiyama Y, Ishiura H, Sakai C, Matsushima Y, Hatakeyama H, Honda J, Sakoe K, Naoi T, Namekawa M, Fukuda Y, Takahashi Y, Goto J, Tsuji S, Goto Y, Nakano I., Japan Spastic Paraplegia Research Consortium (JASPAC). A homozygous mutation of C12orf65 causes spastic paraplegia with optic atrophy and neuropathy (SPG55). J Med Genet. 2012;49:777 - 84. [PubMed: 23188110]
  • Simpson MA, Cross H, Proukakis C, Pryde A, Hershberger R, Chatonnet A, Patton MA, Crosby AH. Maspardin is mutated in mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. Am J Hum Genet. 2003;73:1147 - 56. [PMC free article: PMC1180493] [PubMed: 14564668]
  • Słabicki M, Theis M, Krastev DB, Samsonov S, Mundwiller E, Junqueira M, Paszkowski-Rogacz M, Teyra J, Heninger AK, Poser I, Prieur F, Truchetto J, Confavreux C, Marelli C, Durr A, Camdessanche JP, Brice A, Shevchenko A, Pisabarro MT, Stevanin G, Buchholz F. A genome-scale DNA repair RNAi screen identifies SPG48 as a novel gene associated with hereditary spastic paraplegia. PLoS Biol. 2010;8:e1000408. [PMC free article: PMC2893954] [PubMed: 20613862]
  • Steinmüller R, Lantigua-Cruz A, Garcia-Garcia R, Kostrzewa M, Steinberger D, Müller U. Evidence of a third locus in X-linked recessive spastic paraplegia. Hum Genet. 1997;100:287 - 9. [PubMed: 9254866]
  • Subramony SH, Nguyen TV, Langford L, Lin X, Parent AD, Zhang J. Identification of a new form of autosomal dominant spastic paraplegia. Clin Genet. 2009;76:113 - 6. [PubMed: 19519683]
  • Svenstrup K, Møller RS, Christensen J, Budtz-Jørgensen E, Gilling M, Nielsen JE. NIPA1 mutation in complex hereditary spastic paraplegia with epilepsy. Eur J Neurol. 2011;18:1197 - 9. [PubMed: 21599812]
  • Tamagaki A, Shima M, Tomita R, Okumura M, Shibata M, Morichika S, Kurahashi H, Giddings JC, Yoshioka A, Yokobayashi Y. Segregation of a pure form of spastic paraplegia and NOR insertion into Xq11.2. Am J Med Genet. 2000;94:5 - 8. [PubMed: 10982474]
  • Tang BS, Chen X, Zhao GH, Shen L, Yan XX, Jiang H, Luo W. Clinical features of hereditary spastic paraplegia with thin corpus callosum: report of 5 Chinese cases. Chin Med J (Engl) 2004;117:1002 - 5. [PubMed: 15265372]
  • Tesson C, Nawara M, Salih MA, Rossignol R, Zaki MS, Al Balwi M, Schule R, Mignot C, Obre E, Bouhouche A, Santorelli FM, Durand CM, Oteyza AC, El-Hachimi KH, Al Drees A, Bouslam N, Lamari F, Elmalik SA, Kabiraj MM, Seidahmed MZ, Esteves T, Gaussen M, Monin ML, Gyapay G, Lechner D, Gonzalez M, Depienne C, Mochel F, Lavie J, Schols L, Lacombe D, Yahyaoui M, Al Abdulkareem I, Züchner S, Yamashita A, Benomar A, Goizet C, Durr A, Gleeson JG, Darios F, Brice A, Stevanin G. Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. Am J Hum Genet. 2012;91:1051 - 64. [PMC free article: PMC3516610] [PubMed: 23176821]
  • Tsaousidou MK, Ouahchi K, Warner TT, Yang Y, Simpson MA, Laing NG, Wilkinson PA, Madrid RE, Patel H, Hentati F, Patton MA, Hentati A, Lamont PJ, Siddique T, Crosby AH. Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am J Hum Genet. 2008;82:510 - 5. [PMC free article: PMC2426914] [PubMed: 18252231]
  • Valdmanis PN, Meijer IA, Reynolds A, Lei A, MacLeod P, Schlesinger D, Zatz M, Reid E, Dion PA, Drapeau P, Rouleau GA. Mutations in the KIAA0196 gene at the SPG8 locus cause hereditary spastic paraplegia. Am J Hum Genet. 2007;80:152 - 61. [PMC free article: PMC1785307] [PubMed: 17160902]
  • Valente EM, Brancati F, Caputo V, Bertini E, Patrono C, Costanti D, Dallapiccola B. Novel locus for autosomal dominant pure hereditary spastic paraplegia (SPG19) maps to chromosome 9q33-q34. Ann Neurol. 2002;51:681 - 5. [PubMed: 12112072]
  • Vazza G, Zortea M, Boaretto F, Micaglio GF, Sartori V, Mostacciuolo ML. A new locus for autosomal recessive spastic paraplegia associated with mental retardation and distal motor neuropathy, SPG14, maps to chromosome 3q27-q28. Am J Hum Genet. 2000;67:504 - 9. [PMC free article: PMC1287196] [PubMed: 10877981]
  • Verkerk AJ, Schot R, Dumee B, Schellekens K, Swagemakers S, Bertoli-Avella AM, Lequin MH, Dudink J, Govaert P, van Zwol AL, Hirst J, Wessels MW, Catsman-Berrevoets C, Verheijen FW, de Graaff E, de Coo IF, Kros JM, Willemsen R, Willems PJ, van der Spek PJ, Mancini GM. Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy. Am J Hum Genet. 2009;85:40 - 52. [PMC free article: PMC2706965] [PubMed: 19559397]
  • Verny C, Guegen N, Desquiret V, Chevrollier A, Prundean A, Dubas F, Cassereau J, Ferre M, Amati-Bonneau P, Bonneau D, Reynier P, Procaccio V. Hereditary spastic paraplegia-like disorder due to a mitochondrial ATP6 gene point mutation. Mitochondrion. 2011;11:70 - 5. [PubMed: 20656066]
  • Wilkinson PA, Crosby AH, Turner C, Patel H, Wood NW, Schapira AH, Warner TT. A clinical and genetic study of SPG5A linked autosomal recessive hereditary spastic paraplegia. Neurology. 2003;61:235 - 8. [PubMed: 12874406]
  • Wilkinson PA, Simpson MA, Bastaki L, Patel H, Reed JA, Kalidas K, Samilchuk E, Khan R, Warner TT, Crosby AH. A new locus for autosomal recessive complicated hereditary spastic paraplegia (SPG26) maps to chromosome 12p11.1-12q14. J Med Genet. 2005;42:80 - 2. [PMC free article: PMC1735920] [PubMed: 15635080]
  • Windpassinger C, Auer-Grumbach M, Irobi J, Patel H, Petek E, Hörl G, Malli R, Reed JA, Dierick I, Verpoorten N, Warner TT, Proukakis C, Van den Bergh P, Verellen C, Van Maldergem L, Merlini L, De Jonghe P, Timmerman V, Crosby AH, Wagner K. Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nat Genet. 2004;36:271 - 6. [PubMed: 14981520]
  • Winner B, Uyanik G, Gross C, Lange M, Schulte-Mattler W, Schuierer G, Marienhagen J, Hehr U, Winkler J. Clinical progression and genetic analysis in hereditary spastic paraplegia with thin corpus callosum in spastic gait gene 11 (SPG11). Arch Neurol. 2004;61:117 - 21. [PubMed: 14732628]
  • Zhao GH, Hu ZM, Shen L, Jiang H, Ren ZJ, Liu XM, Xia K, Guo P, Pan Q, Tang BS. A novel candidate locus on chromosome 11p14.1-p11.2 for autosomal dominant hereditary spastic paraplegia. Chin Med J (Engl) 2008;121:430 - 4. [PubMed: 18364116]
  • Zhao X, Alvarado D, Rainier S, Lemons R, Hedera P, Weber CH, Tukel T, Apak M, Heiman-Patterson T, Ming L, Bui M, Fink JK. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat Genet. 2001;29:326 - 31. [PubMed: 11685207]
  • Zivony-Elboum Y, Westbroek W, Kfir N, Savitzki D, Shoval Y, Bloom A, Rod R, Khayat M, Gross B, Samri W, Cohen H, Sonkin V, Freidman T, Geiger D, Fattal-Valevski A, Anikster Y, Waters AM, Kleta R, Falik-Zaccai TC. A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis. J Med Genet. 2012;49:462 - 72. [PubMed: 22717650]
  • Zortea M, Vettori A, Trevisan CP, Bellini S, Vazza G, Armani M, Simonati A, Mostacciuolo ML. Genetic mapping of a susceptibility locus for disc herniation and spastic paraplegia on 6q23.3-q24.1. J Med Genet. 2002;39:387 - 90. [PMC free article: PMC1735154] [PubMed: 12070243]
  • Züchner S, Kail ME, Nance MA, Gaskell PC, Svenson IK, Marchuk DA, Pericak-Vance MA, Ashley-Koch AE. A new locus for dominant hereditary spastic paraplegia maps to chromosome 2p12. Neurogenetics. 2006a;7:127 - 9. [PubMed: 16565863]
  • Züchner S, Wang G, Tran-Viet KN, Nance MA, Gaskell PC, Vance JM, Ashley-Koch AE, Pericak-Vance MA. Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31. Am J Hum Genet. 2006b;79:365 - 9. [PMC free article: PMC1559498] [PubMed: 16826527]

Revision History

  • 6 February 2014 (me) Comprehensive update posted live
  • 3 February 2009 (cd) Revision: for SPG5A available clinically
  • 21 May 2008 (cd) Revision: mutations in ZFYVE26 identified as causative of SPG15
  • 4 March 2008 (cd) Revision: of entire available for SPG8 and SPG33
  • 4 October 2007 (cd) Revision: for SPG10 available on a clinical basis
  • 11 July 2007 (me) Comprehensive update posted to live Web site
  • 21 October 2004 (cd) Revision: arginase deficiency added
  • 26 February 2004 (cd) Revision: testing for SPG6 clinically available
  • 15 October 2003 (cd) Revision: test availability
  • 22 September 2003 (me) Comprehensive update posted to live Web site
  • 15 August 2000 (me) Overview posted to live Web site
  • 21 March 2000 (jf) Original submission