摘要
临床特点
富含亮氨酸重复序列的激酶2(Leucin Rich Repeat Kinase 2)基因(LRRK2)相关的帕金森病(Parkinson's disesse,PD)的临床特征与特发性PD一致,初始的运动症状主要表现为:缓慢进展的非对称的静止性震颤、运动迟缓、齿轮样肌强直、姿势不稳和步态异常(包括慌张步态和冻结步态)。LRRK2相关的PD中非运动性症状的发生率也与典型的特发性PD相似。LRRK2相关PD的起病通常在50岁后发生。
诊断/辅助检查
LRRK2相关PD的诊断依赖于疾病的临床表现和识别LRRK2基因中致病突变。 致病性变异
治疗
对 症治疗:多巴胺替代治疗是目前主要的治疗方式,其中最常用 的是多巴胺前体——左旋多巴联合卡比多巴合 剂。此外还包括多巴胺受体激动剂、儿茶酚氧位甲基转移酶(COMT)抑制剂及单胺氧化酶-B(MAO-B)抑制剂等。同时,物理治疗、职业治疗以及言语康 复训练也有利于疾病治疗。神经外科手术,如对丘脑底核/苍白球内膜或苍白球脑桥核的深部脑刺激术,对部分运动障碍或步态障碍突出的患者有效。较少使用的苍 白球切开术和 胎儿尾状核脑内移植手术也可能使部分患者获益。
继发并发症的预防:预防左旋多巴引起的运动障碍的措施包括深部脑刺激术、持续性药物释放/刺激(CDD / CDS)、减少左旋多巴的用量以及加用多巴胺受体激动剂等。
随访和监测:每年定期神经系统检查,评估步态,震颤,僵硬,认知和情绪等。
注意事项:精神安定剂可能会加重帕金森病的症状。
诊断
临床诊断
富含亮氨酸重复序列的激酶2(Leucin Rich Repeat Kinase 2)基因(LRRK2)相关的帕金森病(Parkinson's disesse,PD)的诊断依赖于疾病临床表现和识别LRRK2基因中致病突变。致病性变异
临床证据
-
LRRK2相关PD的运动特征通常难以与特发性PD鉴别,具体特征如下: [Aasly et al 2005, Gosal et al 2005, Ishihara et al 2006, Alcalay et al 2013, Trinh et al 2014b]:
-
非对称的静止性震颤
-
运动迟缓
-
肌强直
-
姿势不稳
-
步态异常,包括慌张步态和冻结步态。
-
-
通常50岁后发病
-
疾病进展缓慢
-
对低至中等剂量的左旋多巴的反应好
分子遗传学检查
基因: LRRK2基因,编码富含亮氨酸重复序列的丝氨酸/苏氨酸蛋白激酶2,其内的致病突变是目前唯一已知的可导致LRRK2相关PD发生的基因。
临床检查
表 1.
LRRK2相关的PD中使用的分子遗传学检测小结
基因 1 | 检测方法 | 检出率 |
---|---|---|
LRRK2 | 靶突变分析 2 | 因种族而异 |
序列分析 3, 4 | ~100% 5 | |
缺失/重复重复 分析 6, 7 | 尚不清楚,没有相关报道 7 |
参见表ATable A。.染色体位点和蛋白相关基因和数据库Genes and Databases。有关在该基因中检测到的等位基因变体的信息,请参阅分子遗传学Molecular Genetics。
2.
测试方式可能因实验室而异。一些研究小组发现一些外显率较低且在亚洲人群中特异表达的致病突变体(2倍风险),如p.Arg1628Pro和p.Gly2385Arg等,这两个突变在健康人群的比例高达1%。目前至少已知七种突变是致病性的(见表3-5 Table 3, Tables 4-5 [pdf]) [Paisan-Ruiz et al 2004, Zimprich et al 2004, Di Fonzo et al 2005, Gilks et al 2005, Kachergus et al 2005, Nichols et al 2005, Di Fonzo et al 2006b, Ross et al 2008, Aasly et al 2010].突变检测率因种族而异。
3.
序列分析可以检测突变是良性的、可能良性的、意义不明确的意义未明、可能致病性的或致病性的等多种情况。致病突变可能包括小的基因缺失、插入、错义、无义和剪接位点突变等,序列分析不能进行外显子或全基因缺失、重复等检测。更多分析序列检测结果考虑的问题,请点击此处here.
4.
其他LRRK2可能 的致病性突变包括p.Arg1441His,p.Ala1442Pro和p.Ile2012Thr等。LRRK2 p.Asn1437His虽然罕见,但是可能是另一种致病突变。p.Arg1628Pro和p.Gly2385Arg两个风险位点已在亚洲人群中被发现 [Di Fonzo et al 2006b, Tan et al 2006, Tomiyama et al 2006, Farrer et al 2007, Lu et al 2008, Ross et al 2008, Tan et al 2008]. 目前还观察到其他至少250种编码突变,其中至少80个突变可导致非同义氨基酸替代。世界范围内的病例对照研究已经详细描述了最常见的LRRK2外显子突变,许多已被指定认为可增加或减少帕金森病的发生风险[Ross et al 2011].。
5.
LRRK2相关PD是指由于LRRK2基因发生致病突变引起的PD,因此在这些病人中核酸改变、小的缺失、插入和剪接位点剪接位点共有序列突变的检出率接近100%。
6.
通过基因组DNA的编码序列和靠近外显子周围内含子区域的序列分析不能检测出的外显子或全基因缺失、重复的突变的方法。目前常使用的检测方法包括:定量PCR,大片段PCR,多重连接依赖性探针扩增(MLPA)和包含该基因/染色体片段的染色体微阵列(CMA)。
7.
迄今为止,LRRK2的缺失或重复突变引起LRRK2相关的PD未见报道 [Mata et al 2005a, Di Fonzo et al 2006a].
检测策略
先证者先证者确认/确定诊断。当个体具有已知的LRRK2致病突变之一时,可确诊LRRK2相关的PD。
单基因检测策略是指仅对LRRK2基因进行分子遗传学检测分子遗传学检测LRRK2。
-
-
p.Arg1441Gly 只局限于西班牙裔或西班牙裔祖先的人群。
-
p.Gly2019Ser 应首先在犹太人或北非柏柏尔人人群中进行测试。
-
p.Arg1441Cys在比利时血统中最常见。
-
p.Arg1628Pro 和 p.Gly2385Arg只在亚洲血统的个体中普遍存在。
-
其他罕见的LRRK2突变具有在全球范围内均有分布的特点。
-
-
如果靶向突变分析没有鉴定出种族特异性致病性突变体或种族未知,则应从编码Roc、COR和激酶结构域的外显子开始进行整个编码区的序列分析。
可替代的基因检测策略:是使用包含LRRK2和其他感兴趣基因的多基因检测方法表型靶向检测 (见鉴别诊断Differential Diagnosis)。注意:基因和多基因检测过程中使用的方法因实验室和时间而异。
临床变现
临床描述
LRRK2相关的帕金森病(PD)的临床特征是与特发性PD一致:初始运动症状主要包括不对称的静止性震颤、运动迟缓、齿轮肌强直以及姿势和步态异常(包括慌张步态和冻结步态)。
疾病起病隐匿,进展缓慢。发病年龄各异,即使在同一个家庭中的患者也是如此。平均发病年龄约为60岁,属于晚发型帕金森病。目前研究显示帕金森病的发病年龄范围为28-82岁 [Ishihara et al 2006, Kay et al 2006, Trinh et al 2014b]。男女患病率相当。
LRRK2相 关PD中的非运动性症状的发生率与典型的特发性PD相似,非运动症状主要包括包括便秘,皮脂溢,嗅觉下降/嗅觉丧失,心脏交感神经失 调,情绪障碍(冷漠,抑郁),认知衰退,痴呆和睡眠障碍等。这些非运动症状可能出现在运动症状之前,或随疾病进展而出现。便秘,情绪障碍,嗅觉功能障碍和 睡眠障碍是PD的潜在临床前标志性症状。几乎所有患有PD患者都表现出睡眠障碍,如日间过度嗜睡、快速动眼期睡眠行为障碍(RBD),这些症状可以在疾病 早期出现。轻度认 知障碍和痴呆可能发生在疾病晚期。抑郁症在帕金森病中十分普遍,40%患者受累的可能并发抑郁症[Chaudhuri et al 2006, Langston 2006]。
大量研究显示LRRK2相关的PD和特发性PD的患者之间具有相似的临床特征[Alcalay et al 2013]。然而,大样本的突尼斯-阿拉伯柏柏尔人人群队列研究显示,与特发性PD相比,具有LRRK2中p.Gly2019Ser致病突变p.Gly2019Ser 致病性变异的PD患者RBD症状和胃肠功能障碍较轻 [Trinh et al 2014a]。
一个家庭的七名成员(“林肯郡家族”,致病突变体p.Tyr1699Cys分离)表现出以抑郁和焦虑为特征的行为障碍 [Khan et al 2005]。最初鉴定出p.Tyr1699Cys致病突变(“家族A”)的家族也表现出了痴呆和肌萎缩等非典型症状[Zimprich et al 2004]
LRRK2相关PD中认知障碍的发生似乎并不比典型的散发性散发性病例常见;然而,一项对于具有p.Gly2019Ser致病突变p.Gly2019Ser 致病性变异的PD患者的报道显示,该类患者精神状态检查评分低于预期[Lesage et al 2005]。但是这些发现并不能反映绝大多数LRRK2相关的PD,进一步的临床研究表明,对于p.Gly2019Ser突变体杂合杂合的的个体,认知障碍发生频率降低[Healy et al 2008]。然而,随后的研究表明,与LRRK2相关的PD患者与特发性PD患者认知障碍发生频率相当[Alcalay et al 2013, Estanga et al 2014]。神经影像学
-
脑部CT和MRI 通常正常
- 与对照组相比,LRRK2致病突变p.Gly2019Ser、p.Tyr1699Cys和p.Arg1441Cys相关PD的正电子发射断层摄影(PET)显示F18-多巴摄取较正常对照显著降低。和典型的晚发型PD相同,吸收降低为非对称,与尾状核相比,尾状核头部和壳核摄取降低更为明显[Adams et al 2005, Hernandez et al 2005, Khan et al 2005, Paisan-Ruiz et al 2005]。突触前膜多巴胺转运蛋白(SLCA3)和囊泡单胺转运蛋白(SLC18A2)也可观察到相应的摄取减少[Adams等人2005]。在具有相同LRRK2致病突变之一的无症状个体中可以观察到类似的发现 [Adams et al 2005]。在最近一项对p.Arg1441Cys的家系研究中,发现使用多种突触前和突触后示踪剂进行的PET检测发现在运动障碍患者以及年轻无症状杂合子中均存在进行性的多巴胺能功能障碍[Nandhagopal et al 2008]。
神经病理学
常见的特发性PD的特征性病理特征是黑质神经元的丢失、胶质细胞的增生、以及胞质内包涵体(路易体)的形成。大多数LRRK2相关的PD患者也具有这些病理特征[Ross et al 2006]。然而,LRRK2相关PD也可出现其他四种病理特征[Wszolek et al 2004, Zimprich et al 2004, Funayama et al 2005, Ross et al 2006, Covy et al 2009, Ujiie et al 2012]:
-
黑质神经元的丢失和胶质细胞的增生,不伴有路易体的形成
-
神经纤维缠结
-
泛素化免疫阳性包涵体 (Marinesco 小体)
-
TDP-43 包涵体
有报道证实在PD患者路易体中发现了Lrrk2免疫组织化学染色阳性,但免疫组织化学染色使用的抗体的特异性仍需进一步确认。 [Giasson et al 2006, Miklossy et al 2006, Biskup et al 2007, Higashi et al 2007, Alegre-Abarrategui et al 2008, Perry et al 2008].
LRRK2相关的PD可能是诊断帕金森障碍的重要线索,因为:(1)所有与帕金森症相关的主要病理改变在LRRK2相关的PD中均可被观察到;(2)即使在具有相同致病性突变致病性变异的患者家系中,终末期病理改变也可能不同(见表2, Table 2)。例如:
-
p.Arg1441Cys. 具有这种致病突变体的PD家系的四名成员具有不同的病理学特征:
-
一名患者在皮质和脑干内具有弥漫性路易体病变;
-
一名患者路易体病变仅限于脑干,与典型的特发性PD的病例改变相同;
-
另一名患者具有球状神经原纤维缠结和簇状星形胶质细胞的4R- tau蛋白病变,是嗜银粒状病和进行性核上性麻痹(PSP)典型的病理改变;
-
最后一名患者具有黑质神经元变性和胶质细胞增生,与其他3例患者无共同的病理特征。 [Wszolek et al 2004].
-
-
p.Tyr1699Cys. 具有此致病突变的家系A中,两名患者出现胞浆泛素免疫反应阳性伴核内包涵体(Marinesco体)形成,然而另一名患者具有脑干路易体病变。 [Zimprich et al 2004].
-
p.Gly2019Ser.作为最常见的致病性突变,大多数尸检患者中可出现p.Gly2019Ser,在这些患者中可观察到脑干α-突触核蛋白免疫阳性路易体病理改变 [Taylor et al 2006]。然而,黑质神经元丢失和神经胶质细胞的增生、tau蛋白病理变化以及泛素免疫阳性病理学特征在这些病例中很少出现[Giasson et al 2006, Ross et al 2006] (见表2 Table 2).
-
p.Ile2020Thr. 神奈川的四名携带有这种病原性突变体的患者中观察到中度黑质神经元变性和胶质细胞增生,未发现其他病理学改变[Funayama et al 2005]。其后也在携带有这种致病突变的六个患者中发现Tau蛋白病理改变[Ujiie et al 2012]。
表 2.
与LRRK2相关的PD的个体数量与不同的病原体发现
LRRK2 致病突变体 | 路易体和神经突 | Tau 和 NFTs | 泛素化 | 仅神经元丢失 |
---|---|---|---|---|
p.Arg1441Cys | 2 | 1 | 0 | 1 |
p.Tyr1699Cys | 1 | 0 | 1 | 1 |
p.Gly2019Ser | 13 | 2 | 1 | 1 |
p.Ile2020Thr | 1 | 6 | 0 | 6 |
NFTs=神经纤维缠结
Zimprich et al [2004], Funayama et al [2005], Gilks et al [2005], Giasson et al [2006], Rajput et al [2006], Ross et al [2006], Ujiie et al [2012]
在一些观察到神经元的丢失和一些其他非特异性病例改变的病例中可检测到TDP-43阳性的包涵体 [Covy et al 2009; Dennis Dickson, personal communication]。
基因型-表型的相关性
虽然之前没有发现特定LRRK2致病变体与发病年龄、临床表现或疾病进展之间具有某种相关性 [Haugarvoll et al 2008, Healy et al 2008, Hulihan et al 2008],但越来越多的证据显示在Ashkenazi犹太人Ashkenazi Jewish中,杂合LRRK2 p.Gly2019Ser致病突变体的个体更有可能表现出姿势不稳定和步态障碍 [Alcalay et al 2013]。此外,p.Gly2019Ser杂合子无论什么时候发病,疾病进展速度是匀速的[Trinh et al 2014b]。神经病理学相关性见表2Table 2。
“Dardarin”,巴斯克语中的“颤抖”,最初被提出作为由LRRK2编码的蛋白(一种富含亮氨酸的重复丝氨酸/苏氨酸-蛋白激酶2,Lrrk2)的名称,以突显具有该基因p.Arg1441Gly致病突变的患者表现为过度的震颤。然而,具有这种致病突变的患者也可能表现出运动迟缓 [Paisan-Ruiz et al 2004, Mata et al 2005b]。
外显率
LRRK2致病突变致病性变异的外显率和年龄相关,但可因致病突变和种群的不同而不同。
在基于人群的研究中,Ozelius等人Ozelius et al [2006]通过两种方法确定了携带p.Gly2019Serp.Gly2019Ser帕金森症的终生外显率外显率:
p.Gly2019Ser最常见的突尼斯阿拉伯柏柏尔人群中的终生外显率外显率为45%[Hulihan et al 2008]。然而,由于外显率与年龄相关,将其定义为年龄相关的累积风险更有意义。在一项对于具有p.Gly2019Ser致病突变的突尼斯阿拉伯柏柏尔人的PD患者的研究中发现,帕金森症的症状在年龄小于50岁的杂合子中发生率少于20%,但是在70岁以上的杂合子中超过80%的个体会出现PD症状。在这些人群中,p.Gly2019Ser突变体杂合子中疾病的优势比为22.6(95%CI 10.2-50.1)[Hulihan et al 2008]。杂合子和罕见纯合子的发病风险相当[Ishihara et al 2006]。
相比之下,多元家系(即患者人数>1的家系)的分析表明其终生外显率外显率比单患者家系高约67%[Kachergus et al 2005, Healy et al 2008, Latourelle et al 2008]。对LRRK2 p.Gly2019Ser的初始研究表明,在50岁时,杂合子出现PD症状的概率低于20%,但其后发生率呈直线增长,75岁时80%以上杂合子出现PD症状[Kachergus et al 2005]。最近的研究表明,50岁时出现PD症状的风险约为8%,75岁时则大于55%[Latourelle et al 2008]。然而,80岁以上无症状的p.Gly2019Ser杂合子的案例也有报道 [Kay et al 2005, Carmine Belin et al 2006].。
最近,已经有研究显示性别会影响LRRK2致病突变杂合子杂合的 的累积发病率,女性发病时间中位数较男性早五年 [Cilia et al 2014, Trinh et al 2014a]。
种族背景也可能影响外显率。与突尼斯阿拉伯柏柏尔人相比,挪威人累积发生率显著下降。然而,对于携带LRRK2 p.Gly2019Ser致病性突变的杂合子,以色列德系犹太人与突尼斯阿拉伯柏柏尔人有相似的外显率[Hentati et al 2014, Trinh et al 2014a]。有趣的是,纽约德系犹太人群体的外显率比挪威群体更低 [Clark et al 2006]。虽然鉴定方法和报告中的偏移可能引起差异的存在,但目前遗传和/或环境对基因外显率以及疾病易感性的影响仍需大量的研究。
关于LRRK2 p.Gly2019Ser的外显率被最为广泛报道,而对p.Arg1441Cys的基于谱系家系的外显率研究结果显示与p.Gly2019Ser相似[Haugarvoll et al 2008]。
遗传早现
遗传早现是指某种遗传病在连续世代中,发病时间一代早于一代,症状一代比一代严重的现象。通常发生在不稳定的重复扩增突变所导致的疾病,例如亨廷顿病Huntington disease。遗传早现现象在LRRK2相关的PD中尚没有记录,并且不太可能发生,但是已有家系显示LRRK2基因具有遗传早现现象 [Khan et al 2005]。
命名
PARK8是指在日本一个大型PD族群中发现的与PD相关位于的12q12染色体区域[Funayama et al 2002].但确定了相关基因基因和特异性致病突变后 致病性变异 ,该术语变得多余。
表示“震颤”的巴斯克语“dardarin”已被用于指由致病性 p.Arg1441Gly 突变引起的LRRK2相关PD。
流行性
在美国,LRRK2相关PD约占散发型PD(即家族中首次出现)的1.0%和约5%-6%的家族性PD。
LRRK2 p.Gly2019Ser是最常见的致病性突变致病性变异,主要表现如下:
-
英国约有0.5%的散发性PD [Williams-Gray et al 2006]
-
挪威中部约有2%家族性PD [Aasly et al 2005]
-
意大利约有0.9%散发性PD和5.1%家族性PD [Goldwurm et al 2005]
-
西班牙北部为2.7%-7.6% [Mata et al 2006a]
-
北非(摩洛哥,阿尔及利亚和突尼斯)约有30%的散发性PD [Gaig et al 2006, Infante et al 2006, Hulihan et al 2008] 和高达41%的家族性PD [Lesage et al 2006, Hulihan et al 2008]
-
日本约有0.4%散发型PD [Zabetian et al 2006]
注意:(1)另一项研究中报道了p.Gly2019Ser在一名日本PD患者存在 [Tomiyama et al 2006]。然而,该研究虽然报道了亚洲样本中p.Gly2019Ser的频率,但并没有指明日本PD患者该突变的频率。 (2)迄今为止,1200多名中国血统的PD患者中尚未发现p.Gly2019Ser[Lu et al 2005, Tan et al 2006, Tomiyama et al 2006]。故将所有亚洲人口组合成一个单一群体是不可取的,因此,p.Gly2019Ser很可能发生在日本人中,但不在其他亚洲人群中。
这些基因频率主要是通过临床和/或社区病例推断得到的,但在美国则主要是基于样本的发生率[未发表的数据]。
无症状杂合子(包括1个91岁的患者)在家族性PD中更明显,通常通过受影响的先证者受累的 先证者即可确定 [Gaig et al 2006];然而,致病性LRRK2突变体在年龄/性别匹配的群体对照中几乎不存在[Kachergus et al 2005, Mata et al 2005a, Hulihan et al 2008]。在德系犹太祖先的未选择个体中,p.Gly2019Ser的发生率可能为1%-2%[Ozelius et al 2006, Saunders-Pullman et al 2006]。
西班牙北部巴斯克社区的约8%的PD患者具有p.Arg1441Gly致病突变体致病性变异,该突变体可能是一个始祖突变,因为其在西班牙语范围之外尚没有报道[Paisan-Ruiz et al 2004, Mata et al 2005b, Deng et al 2006, Simón-Sánchez et al 2006, González-Fernández et al 2007, Mata et al 2009]。据估计,最近的共同祖先生活在1350年前(95%CI,1020-1740)(约7个世纪前),表明p.Arg1441Gly起源于巴斯克人群,然后通过小范围的基因流动发生突变的播散,故主要限于西班牙附近的地区[Mata et al 2009]。
遗传相关(等位基因)疾病
具有LRRK2致病突变的少数个体具有非典型的症状,如进行性核上性麻痹和肌萎缩侧索硬化样症状以及其他神经变性疾病如阿尔茨海默病和额颞痴呆等[Zimprich et al 2004, Ross et al 2006, Dächsel et al 2007a, Santos-Rebouças et al 2008]。然而,很难决定某些少数个体PD的发生是由LRRK2基因突变,还是仅仅是巧合。
鉴别诊断
PD的多基因检测可用于对LRRK2相关的PD外的其他PD进行分子分型并鉴别诊断。LRRK2相关的PD与未知原因的PD难以区分(见帕金森病综述,Parkinson Disease Overview.)。然而,分子遗传检测分子遗传学检测可提供了明确的诊断证据。
处理
起始运动症状评估
为确定患有LRRK2相关PD患者的病情和需要,神经系统检查评估应包括以下方面:
-
震颤
-
肌强直
-
运动迟缓
- 步态
-
心理状态
同时,也可以考虑医学遗传学咨询。
对症处理
LRRK2相关PD的治疗与特发性PD的治疗没有差异。多巴胺替代治疗是目前主要的治疗方式,其中最常见的是多巴胺前体——左旋多巴与卡比多巴合剂,此外还包括多巴胺受体激动剂、儿茶酚氧位甲基转移酶(COMT)抑制剂及单胺氧化酶-B(MAO-B)抑制剂等。
运动障碍通常对多巴胺治疗(多巴胺受体激动剂和左旋多巴)有良好的反应。
其他药物包括抗胆碱能药,如司来吉兰和金刚烷胺等 [Lang & Lozano 1998a, Lang & Lozano 1998b, Hristova & Koller 2000, Marjama-Lyons & Koller 2001, Olanow & Stocchi 2004]。
神经外科手术,如丘脑底核/苍白球内膜或苍白球桥脑核深部电刺激术有益于一些运动障碍和步态障碍突出的患者。较少使用的苍白球切开术(或很少采用的尾状核胎儿脑移植术)也可改善病情 [Esselink et al 2004, Schüpbach et al 2007, Gómez-Esteban et al 2008, Munhoz et al 2009]。
适度的物理治疗、职业治疗和言语治疗可能使PD患者获益。迄今为止,有效的治疗非运动症状的方法很有限,使非运动症状影响患者生存质量。
并发症预防
左旋多巴治疗的最常见的并发症是异动症,已经有研究证明深部脑刺激可治疗异动症 [Aasly et al 2005, Gosal et al 2005, Hernandez et al 2005, Goldwurm et al 2006, Ishihara et al 2006, Tomiyama et al 2006]。
其他预防左旋多巴导致的异动症包括持续性药物释放/刺激(CDD/CDS)[Jenner 2008]、减少左旋多巴的用量[Goetz et al 1982]以及加用多巴胺受体激动剂等[Holloway & Frank 2004, Holloway et al 2004]。
随访和监测
每年定期神经系统检查,评估步态,震颤,僵硬,认知和情绪等。
注意事项
精神安定药物可能会加重帕金森病的症状。
亲属危险因素评估
有关亲属危险因素检测相关问题,请参阅遗传咨询遗传咨询部分。
治疗前沿
Lrrk2蛋白是Rab(Roc)、COR和激酶(MAPK)结构域的融合物,并且推测致病突变可以增加激酶活性[Kachergus et al 2005, West et al 2005, Gloeckner et al 2006, Greggio et al 2006]。因此,特异性激酶抑制剂被认为是无症状和发病的LRRK2杂合子和特发性PD中的神经保护因子,为疾病的治疗提供了可能的靶点[Albrecht 2005, Toft et al 2005]。目前正在研发一些特异的激酶抑制剂;然而,选择性将药物靶向输送到中枢神经系统仍然是难以解决的问题 [Lee et al 2010b]。此外,LRRK2激酶抑制可能导致肺和肾的相关并发症 [Herzig et al 2011]。
搜索ClinicalTrials.gov 获取关于各种疾病和状态相关的临床研究的信息。
遗传咨询
遗 传咨询是指向个人和家庭提供关于遗传性疾病 的信息,如疾病的本质、遗传性和疾病的影响等信息,进而帮助其做出更好的医疗决策和个人决定的过程。以下部分主要解决如何进行遗传风险评估及利用家族史和 遗 传检测来确定家庭成员的遗传情况。本节并不能解决个体可能面临的所有个人、文化或伦理问题,也并不能代替向遗传学专业人士的专业遗传咨询。 -ED。
遗传模式
LRRK2 相关PD是通过常染色体显性遗传 常染色体显性遗传 方式遗传的。
家庭成员危险度评估
先证者先证者的父母
-
具有致病性突变的无症状父母随着年龄增长可能出现症状。
-
-
虽然目前尚没有中系嵌合体 胚系嵌合的报道,但仍然有可能发生。
-
新生突变到目前为止还没有报道。该基因内的一些位点可能是高度可变的,特别是1441位氨基酸残基的精氨酸密码子,其中三种氨基酸突变已被报道是致病性的。
-
注意:即使诊断为LRRK2相关性PD的个体,有一位亲本携带有LRRK2致病性突变 致病性变异,也可能出现家族史为阴性的情况,可能原因包括:家庭成员可能已患疾病但未诊断、父母在症状出现前死亡、外显率外显率降低或携带致病突变的父母发病迟发等均可造成家族史假阴性。
先证者先证者的同胞
-
先证者同胞的风险取决于先证者先证者父母的遗传状况。
-
携带有致病性突变体的无症状同胞随着年龄增长,出现症状性的可能性增加。
先证者先证者的子孙
-
LRRK2相关性PD个体的子代有50%的几率携带有致病性突变。
-
具有致病性突变体的后代随着年龄增长,发生症状的可能性增加。
先证者先证者的其他家族成员
-
其他家庭成员的发病风险取决于与先证者父母的遗传状态。
-
如果先证者父母发病或携带有致病性突变体,则其家庭成员可能有发病风险。
遗传相关咨询问题
在分子遗传学检测分子遗传学检测鉴定出家族中特异性LRRK2相关致病突变体,可以检测家系中无症状的成年亲属。这种检测应在正式的遗传学咨询遗传咨询背景下进行,同时,对无症状个体的发病年龄、严重程度、症状类型及进展速度等方面的预测无效。
对 有风险的无症状个体或不明确症状个体的检测是预测性检测,而不是诊断检测。有风险的无症状成年家庭成员可以通过风险监测,以指导生育、经济以及执业规 划等。而一些个体可能有不同的动机,如仅仅是“需要知道”等。无症状的成年家庭成员的风险测试通常需进行测试访谈,以评估测试动机、个体对LRRK2相 关 PD的知识的了解、阳性和阴性测试结果可能的影响以及精神状态等。对进行检查的有风险患者,应该仔细询问其可能遇到的问题,如健康、生活、残疾保险、教育 和工作歧视以及社会和家庭变故等。此外需要考虑的问题包括其他家庭成员的情况等。应签署知情同意书,并做好记录和保密。评估阳性的患者需要进行长期随访和 评估。
目前认为对于年龄在18岁以下无症状儿童进行风险测试不合适,主要是儿童尚没有自主权。此外,这些信息可能影响家庭的稳定性,增加儿童成长过程的被歧视的风险等。
在有LRRK2相关性PD的确诊诊断的家庭中,无论年龄多大,对有症状的个体中进行测试是合适的。
更多信息,请参阅国家遗传顾问协会关于未成年人成年发病基因检测条件的立场声明及美国儿科学院和美国医学遗传学与基因组学院政策声明:儿童基因测试和筛选中的伦理和政策问题。
对具有明显基因突变家庭的考虑方法:当常染色体显性遗传常染色体显性遗传病患者的双亲均不携带致病性突变,也无相关临床症状等,先证者先证者 可能是新生LRRK2突变。然而,也需要考虑一些非医疗解释,如替代父亲或母亲的生育(例如辅助生殖等)或未公开的收养等。
家庭计划
-
确定遗传风险和产前检查的的最佳时间是在怀孕之前。同样,测试无症状家族成员的遗传状况最好在怀孕前进行。
-
向已发病或有发病风险的年轻成人提供遗传咨询(包括讨论子代潜在的发病风险和生育决策等)是建议的。
“DNA库”是DNA的存储方式(通常从白细胞中提取),以备日后使用。因为将来测试方法和我们对基因、等位基因变异以及疾病的理解将有所改善,所以应该考虑储存患者的DNA。
产前检测
如果已经在发病的家庭成员中鉴定到LRRK2致病性突变体致病性变异,对风险增加的孕妇的产前检测,相关临床试验室可以提供该基因检测或常规产前检测定制产前检测致病变异。
成人发病的如LRRK2相关PD的产前检测请求并不常见。在医疗专业人员和患者家庭成员中可能存在使用产前检测方面的认识差异,特别是为了妊娠终止而考虑的产前检测。虽然大多数医疗中心会考虑父母对产前检测的决定,但是对这些问题的讨论应该适度。
植入前遗传诊断(PGD)可能是已经鉴定发现了LRRK2致病突变的一些家庭的选择。
资源
GeneReviews的工作人员选择了以下具体疾病和/或伞式支持组织和/或注册管理机构,以造福患有这种疾病的个人及其家属。 GeneReviews不对其他组织提供的信息负责。有关选择标准的信息,请点击此处here.。
-
American Parkinson Disease Association (APDA)135 Parkinson AvenueStaten Island NY 10305Phone: 800-223-2732 (toll-free); 718-981-8001Fax: 718-981-4399Email: apda@apdaparkinson.org
-
Fox Trial Finder
-
Michael J. Fox Foundation for Parkinson's ResearchChurch Street StationPO Box 780New York NY 10008-0780Phone: 800-708-7644 (toll-free)Email: info@michaeljfox.org
-
National Library of Medicine Genetics Home Reference
-
National Parkinson Foundation1501 Northwest 9th AvenueBob Hope RoadMiami FL 33136-1494Phone: 800-327-4545 (toll-free); 305-243-6666Fax: 305-243-6073Email: contact@parkinson.org
-
Parkinson's Disease Foundation (PDF)1359 BroadwaySuite 1509New York NY 10018Phone: 800-457-6676 (Toll-free Helpline); 212-923-4700Fax: 212-923-4778Email: info@pdf.org
分子遗传学
分子遗传学和OMIM表中的信息可能与GeneReview中的其他信息不完全相同,表中可能包含更多最新信息—ED.
表 A.
LRRK2相关帕金森病:基因和数据库
基因座名称 | 基因 | 在染色体上的位置 | 蛋白 | 特定位置 | HGMD |
---|---|---|---|---|---|
PARK8 | LRRK2 | 12q12 | Leucine-rich repeat serine/threonine-protein kinase 2 | Parkinson's disease Mutation Database (LRRK2) PD mutation database (LRRK2) |
LRRK2 |
表 B.
OMIM中LRRK2相关的帕金森病 (View All in OMIM)
基因结果. LRRK2 长14kb,由51个外显子组成。只有一个转录本 NM_198578.3。更详细的基因和蛋白信息请参见表A Table A, Gene.
等位基因. LRRK2 致病性突变列在表3中Table 3; 更多详细信息请见表3a (pdf) Table 3a (外显子, 结构域, and rs#).
由于许多LRRK2突变体的致病性迄今尚未确定,其他已知的突变为非同义和沉默等位基因突变。见表4和5 Tables 4 and 5 (pdf)。
表 3.
选择的LRRK2突变
突变体分类 | DNA 核苷酸改变 | 蛋白氨基酸改变 | 参考序列 |
---|---|---|---|
致病性的 | c.4309A>C | p.Asn1437His 1 | NM_198578.3 NP_940980.3 |
c.4322G>A | p.Arg1441His 2 | ||
c.4321C>T | p.Arg1441Cys | ||
c.4321C>G | p.Arg1441Gly | ||
c.4883G>C | p.Arg1628Pro 3 | ||
c.5096A>G | p.Tyr1699Cys | ||
c.6055G>A | p.Gly2019Ser | ||
c.6059T>C | p.Ile2020Thr | ||
c.7153G>A | p.Gly2385Arg 3 | ||
可能致病性的 | c.4324G>C | p.Ala1442Pro | |
c.6035T>C | p.Ile2012Thr |
突变体分类说明:表中列出的突变体由相关作者提供, GeneReviews的工作人员尚未进行独立分类验证。
关于命名的注意事项:GeneReviews遵循人类基因组变异学会 (www.hgvs.org )的标准命名规定。有关命名的具体说明,请参见快速参考Quick Reference。
3. 亚洲地区特有的外显率降低的致病突变(2倍风险)也很常见; > 1%的致病突变体存在于健康人中。
基因危险因素. 最近大型全基因组关联研究显示LRRK2基因位点是人群PD发病的危险因素,例如先前备受关注的p.Arg1628Pro和p.Gly2385Arg。 [International Parkinson Disease Genomics Consortium 2011, Lill et al 2012].
来自全球15个国家的23个地区的帕金森病遗传联盟(GEO-PD)研 究人员检测了LRRK2编码的突变的作用。共检测了15,540例样本(包括8,611例PD和6,929例对照)。该研究确定了两个新的危险因素,即 亚洲人群中的pAla419Val和北欧人群中的Met1646Thr,并证实了一种常见的LRRK2保护性单倍型(Asp551Lys- Arg1398His-Lys1423Lys), 表明蛋白的毒性可以被调控,并为未来的神经保护疗法提供了新的希望 [Tan et al 2010, Ross et al 2011]。
正常基因产物 gene: 富含亮氨酸的重复丝氨酸/苏氨酸-蛋白激酶2(Lrrk2)是一种与Roco蛋白质家族同源的含2527个氨基酸的蛋白质(286 kd)。这类Roco蛋白中有六个保守结构域:锚蛋白结构域,富含亮氨酸结构域,Roc,COR,MAPKKK和WD40结构域(参见图1 Figure 1) [Bosgraaf & Van Haastert 2003, Mata et al 2006b]。鉴于Lrrk2的大小、结构域构成以及蛋白质-蛋白质可能的相互作用等,推测其可能参与细胞较高分子量复合体信号传导通路。类似于大多数蛋白激酶和Ras GTP酶构象,Lrrk2蛋白的单体也可以聚合为二聚化的形式[Gloeckner et al 2006, Dächsel et al 2007b, Deng et al 2008, Greggio et al 2008]。

图1.
染色体12q12上144kb的LRRK2基因位点的示意图。 Lrrk2起始结构域由外显子(Ex1-Ex51)和结构域残基数表示 (690). 结构域: ANK = ankyrin repeat region (more.).
目前已经有几项生物化学研究证明了野生型Lrrk2的蛋白激酶活性,并因此命名了许多底物或辅因子 [West et al 2005, Gloeckner et al 2006, Greggio et al 2006, Iaccarino et al 2007]。包括如苏氨酸558、ERM / merlin家族的成员(可以将质膜受体复合物连接到细胞微丝骨架)等[Jaleel et al 2007]。在果蝇中,Lrrk2被证明可以与胰岛素/IGF信号通路相互作用,以增强第37/46位4E-BP的磷酸化,而4E-BP的磷酸化是应激反应和eIF4E(在多巴胺能神经元功能维持中发挥至关重要作用)介导的翻译过程的重要的负调节因子[Imai et al 2008]。但目前为止,生物体中的具体底物尚未被发现,它们与PD的相关性也不十分清楚。
一些研究表明,Lrrk2 结合GTP和GTPase活性对Lrrk2 激酶活性具有修饰作用 [Guo et al 2007, Lewis et al 2007, Li et al 2007, van Egmond et al 2008]。 Roc-COR结构域还可能需要二聚化以获得最佳的GTPase活性[Deng et al 2008, Gotthardt et al 2008, Greggio et al 2008]。
异常的基因产物 基因产物.
目前推测突变的亮氨酸重复丝氨酸/苏氨酸-蛋白激酶2表达上调可增加MAPK活性,导致毒性功能的获得;实验数据现在为这种致病机制提供了一些支持依据。[Smith et al 2005, Greggio et al 2006, Mata et al 2006b].
Lrrk2 p.Gly2019Ser位于第41号外显子和MAPK结构域的“活化铰链”之间,是参与调控分子内和分子间磷酸化的重要位点 [West et al 2005, Greggio et al 2006, MacLeod et al 2006, Smith et al 2006, Jaleel et al 2007, Luzón-Toro et al 2007, Anand et al 2009]. 但是体内增强的激酶活性的增加是否是全部Lrrk2致病性突变体共有的特征,目前仍存在很大的争议[Jaleel et al 2007, Anand et al 2009].
Lrrk2 p.Ile2020Thr的取代和相邻的p.Gly2019Ser也都提供了磷酸化的潜在位点 [Zimprich et al 2004, Funayama et al 2005].。Lrrk2 p.Arg1441Cys,Gly和His的取代可影响Roc结构域中相同的精氨酸残基,即蛋白质的“Ras样”部分。研究表明“Ras样”部分可结合并水解GTP,是Lrrk2激酶活性的先决条件[Mata et al 2006b, Ito et al 2007, Lewis et al 2007, Greggio et al 2008]。Lrrk2 p.Arg1628Pro和p.Tyr1699Cys位于COR结构域内,是桥接Roc和MAPK结构域重要部分。而p.Gly2385Arg位于WD40“木桶”C端的外表面上,具有多个表面结合蛋白序列,有利于蛋白质-蛋白质相互作用 [Mata et al 2006b].
在视黄酸分化的SH-SY5Y细胞、原代神经元培养物及完整的啮齿动物中枢神经系统中,Lrrk2突变体的过度表达可诱导神经突得生长和分支 [MacLeod et al 2006, Plowey et al 2008, Dächsel et al 2010]. 此外,由RNA干扰诱导的Lrrk2敲低或具有缺陷激酶活性的Lrrk2突变体的过表达可增加的神经突长度和分支 [MacLeod et al 2006]。在同一模型中,PD相关的Lrrk2致病性突变体可显着的增加包涵体中磷酸tau的表达,同时伴有溶酶体特征和凋亡 [MacLeod et al 2006]。据报道过表达人类LRRK2 p.Arg1441Gly致病突变体在BAC小鼠模型中,可导致多巴胺释放的缺陷、进行性运动障碍和tau病理学 [Li et al 2009].
近期研究显示突变的LRRK2参与许多不同生物学过程,如自噬,内体-溶酶体功能和Wnt信号转导通路等 [Berwick & Harvey 2011, Berwick & Harvey 2012, Friedman et al 2012, Gómez-Suaga & Hilfiker 2012, Tong et al 2012, Bravo-San Pedro et al 2013].
LRRK2也被证明在突触中起重要作用,并推测其可能在泡囊回收中发挥作用[Lee et al 2010a, Piccoli et al 2011]。已显示LRRK2 p.Gly2019Ser突变可增加纹状体谷氨酸释放的可能性 [Beccano-Kelly et al 2014]。
参考文献
发布指南/共识声明
- National Society of Genetic Counselors. Position statement on genetic testing of minors for adult-onset disorders. Available online. 2012. Accessed 12-4-14.
Literature Cited
- Aasly JO, Toft M, Fernandez-Mata I, Kachergus J, Hulihan M, White LR, Farrer M. Clinical features of LRRK2-associated Parkinson's disease in central Norway. Ann Neurol. 2005;57:762–5. [PubMed]
- Aasly JO, Vilariño-Güell C, Dachsel JC, Webber PJ, West AB, Haugarvoll K, Johansen KK, Toft M, Nutt JG, Payami H, Kachergus JM, Lincoln SJ, Felic A, Wider C, Soto-Ortolaza AI, Cobb SA, White LR, Ross OA, Farrer MJ. Novel pathogenic LRRK2 p.Asn1437His substitution in familial Parkinson's disease. Mov Disord. 2010;25:2156–63. [PMC free article ] [PubMed]
- Adams JR, van Netten H, Schulzer M, Mak E, Mckenzie J, Strongosky A, Sossi V, Ruth TJ, Lee CS, Farrer M, Gasser T, Uitti RJ, Calne DB, Wszolek ZK, Stoessl AJ. PET in LRRK2 mutations: comparison to sporadic Parkinson's disease and evidence for presymptomatic compensation. Brain. 2005;128:2777–85. [PubMed]
- Albrecht M. LRRK2 mutations and Parkinsonism. Lancet. 2005;365:1230. [PubMed]
- Alcalay RN, Mirelman A, Saunders-Pullman R, Tang MX, Mejia Santana H, Raymond D, Roos E, Orbe-Reilly M, Gurevich T, Bar Shira A, Gana Weisz M, Yasinovsky K, Zalis M, Thaler A, Deik A, Barrett MJ, Cabassa J, Groves M, Hunt AL, Lubarr N, San Luciano M, Miravite J, Palmese C, Sachdev R, Sarva H, Severt L, Shanker V, Swan MC, Soto-Valencia J, Johannes B, Ortega R, Fahn S, Cote L, Waters C, Mazzoni P, Ford B, Louis E, Levy O, Rosado L, Ruiz D, Dorovski T, Pauciulo M, Nichols W, Orr-Urtreger A, Ozelius L, Clark L, Giladi N, Bressman S, Marder KS. Parkinson disease phenotype in Ashkenazi Jews with and without LRRK2 G2019S mutations. Mov Disord. 2013;14:1966–71. [PMC free article ] [PubMed]
- Alegre-Abarrategui J, Ansorge O, Esiri M, Wade-Martins R. LRRK2 is a component of granular alpha-synuclein pathology in the brainstem of Parkinson's disease. Neuropathol Appl Neurobiol. 2008;34:272–83. [PMC free article ] [PubMed]
- Anand VS, Reichling LJ, Lipinski K, Stochaj W, Duan W, Kelleher K, Pungaliya P, Brown EL, Reinhart PH, Somberg R, Hirst WD, Riddle SM, Braithwaite SP. Investigation of leucine-rich repeat kinase 2: enzymological properties and novel assays. FEBS J. 2009;276:466–78. [PubMed]
- Beccano-Kelly DA, Volta M, Munsie LN, Paschall SA, Tatarnikov I, Co K, Chou P, Cao LP, Bergeron S, Mitchell E, Han H, Melrose HL, Tapia L, Raymond LA, Farrer MJ, Milnerwood AJ. LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory. Hum Mol Genet. 2014 Oct 24. pii: ddu543. [PubMed]
- Berwick DC, Harvey K. LRRK2 functions as a Wnt signaling scaffold, bridging cytosolic proteins and membrane-localized LRP6. Hum Mol Genet. 2012;21:4966–79. [PMC free article ] [PubMed]
- Berwick DC, Harvey K. LRRK2 signaling pathways: the key to unlocking neurodegeneration? Trends Cell Biol. 2011;21:257–65. [PubMed]
- Biskup S, Moore DJ, Rea A, Lorenz-Deperieux B, Coombes CE, Dawson VL, Dawson TM, West AB. Dynamic and redundant regulation of LRRK2 and LRRK1 expression. BMC Neurosci. 2007;8:102. [PMC free article ] [PubMed]
- Bosgraaf L, Van Haastert PJ. Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta. 2003;1643:5–10. [PubMed]
- Bravo-San Pedro JM, Niso-Santano M, Gómez-Sánchez R, Pizarro-Estrella E, Aiastui-Pujana A, Gorostidi A, Climent V, López de Maturana R, Sanchez-Pernaute R, López de Munain A, Fuentes JM, González-Polo RA. The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cell Mol Life Sci. 2013;70:121–36. [PubMed]
- Carmine Belin A, Westerlund M, Sydow O, Lundströmer K, Håkansson A, Nissbrandt H, Olson L, Galter D. Leucine-rich repeat kinase 2 (LRRK2) mutations in a Swedish Parkinson cohort and a healthy nonagenarian. Mov Disord. 2006;21(10):1731–4. [PubMed]
- Chaudhuri KR, Healy DG, Schapira AH. Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol. 2006;5:235–45. [PubMed]
- Cilia R, Siri C, Rusconi D, Allegra R, Ghiglietti A, Sacilotto G, Zini M, Zecchinelli AL, Asselta R, Duga S, Paganoni AM, Pezzoli G, Seia M, Goldwurm S. LRRK2 mutations in Parkinson’s disease: confirmation of a gender effect in the Italian population. Parkinsonism Relat Disord. 2014;20:911–4. [PMC free article ] [PubMed]
- Clark LN, Wang Y, Karlins E, Saito L, Mejia-Santana H, Harris J, Louis ED, Cote LJ, Andrews H, Fahn S, Waters C, Ford B, Frucht S, Ottman R, Marder K. Frequency of LRRK2 mutations in early- and late-onset Parkinson disease. Neurology. 2006;67:1786–91. [PubMed]
- Covy JP, Yuan W, Waxman EA, Hurtig HI, Van Deerlin VM, Giasson BI. Clinical and pathological characteristics of patients with leucine-rich repeat kinase-2 mutations. Mov Disord. 2009;24:32–9. [PMC free article ] [PubMed]
- Dächsel JC, Behrouz B, Yue M, Beevers JE, Melrose HL, Farrer MJ. A comparative study of Lrrk2 function in primary neuronal cultures. Parkinsonism Relat Disord. 2010;16(10):650–5. [PMC free article ] [PubMed]
- Dächsel JC, Ross OA, Mata IF, Kachergus J, Toft M, Cannon A, Baker M, Adamson J, Hutton M, Dickson DW, Farrer MJ. Lrrk2 G2019S substitution in frontotemporal lobar degeneration with ubiquitin-immunoreactive neuronal inclusions. Acta Neuropathol. 2007a;113:601–6. [PubMed]
- Dächsel JC, Taylor JP, Mok SS, Ross OA, Hinkle KM, Bailey RM, Hines JH, Szutu J, Madden B, Petrucelli L, Farrer MJ. Identification of potential protein interactors of Lrrk2. Parkinsonism Relat Disord. 2007b;13:382–5. [PMC free article ] [PubMed]
- Deng H, Le W, Guo Y, Hunter CB, Xie W, Huang M, Jankovic J. Genetic analysis of LRRK2 mutations in patients with Parkinson disease. J Neurol Sci. 2006;251:102–6. [PubMed]
- Deng H, Le W, Guo Y, Hunter CB, Xie W, Jankovic J. Genetic and clinical identification of Parkinson's disease patients with LRRK2 G2019S mutation. Ann Neurol. 2005;57:933–4. [PubMed]
- Deng J, Lewis PA, Greggio E, Sluch E, Beilina A, Cookson MR. Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proc Natl Acad Sci USA. 2008;105:1499–504. [PMC free article ] [PubMed]
- Di Fonzo A, Rohe CF, Ferreira J, Chien HF, Vacca L, Stocchi F, Guedes L, Fabrizio E, Manfredi M, Vanacore N, Goldwurm S, Breedveld G, Sampaio C, Meco G, Barbosa E, Oostra BA, Bonifati V. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet. 2005;365:412–5. [PubMed]
- Di Fonzo A, Tassorelli C, De Mari M, Chien HF, Ferreira J, Rohe CF, Riboldazzi G, Antonini A, Albani G, Mauro A, Marconi R, Abbruzzese G, Lopiano L, Fincati E, Guidi M, Marini P, Stocchi F, Onofrj M, Toni V, Tinazzi M, Fabbrini G, Lamberti P, Vanacore N, Meco G, Leitner P, Uitti RJ, Wszolek ZK, Gasser T, Simons EJ, Breedveld GJ, Goldwurm S, Pezzoli G, Sampaio C, Barbosa E, Martignoni E, Oostra BA, Bonifati V. Comprehensive analysis of the LRRK2 gene in sixty families with Parkinson's disease. Eur J Hum Genet. 2006a;14:322–31. [PubMed]
- Di Fonzo A, Wu-Chou YH, Lu CS, van Doeselaar M, Simons EJ, Rohe CF, Chang HC, Chen RS, Weng YH, Vanacore N, Breedveld GJ, Oostra BA, Bonifati V. A common missense variant in the LRRK2 gene, Gly2385Arg, associated with Parkinson's disease risk in Taiwan. Neurogenetics. 2006b;7:133–8. [PubMed]
- Esselink RA, de Bie RM, de Haan RJ, Lenders MW, Nijssen PC, Staal MJ, Smeding HM, Schuurman PR, Bosch DA, Speelman JD. Unilateral pallidotomy versus bilateral subthalamic nucleus stimulation in PD: a randomized trial. Neurology. 2004;62:201–7. [PubMed]
- Estanga A, Rodriguez-Oroz MC, Ruiz-Martinez J, Barandiaran M, Gorostidi A, Bergareche A, Mondragon E, Lopez de Munain A, Marti-Masso JF. Cognitive dysfunction in Parkinson's disease related to the R1441G mutation in LRRK2. Parkinsonism Relat Disord. 2014;20(10):1097–100. [PubMed]
- Farrer M, Stone J, Mata IF, Lincoln S, Kachergus J, Hulihan M, Strain KJ, Maraganore DM. LRRK2 mutations in Parkinson disease. Neurology. 2005;65:738–40. [PubMed]
- Farrer MJ, Stone JT, Lin CH, Dächsel JC, Hulihan MM, Haugarvoll K, Ross OA, Wu RM. Lrrk2 G2385R is an ancestral risk factor for Parkinson's disease in Asia. Parkinsonism Relat Disord. 2007;13:89–92. [PubMed]
- Friedman LG, Lachenmayer ML, Wang J, He L, Poulose SM, Komatsu M, Holstein GR, Yue Z. Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain. J Neurosci. 2012;32:7585–93. [PMC free article ] [PubMed]
- Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol. 2002;51:296–301. [PubMed]
- Funayama M, Hasegawa K, Ohta E, Kawashima N, Komiyama M, Kowa H, Tsuji S, Obata F. An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann Neurol. 2005;57:918–21. [PubMed]
- Gaig C, Ezquerra M, Marti MJ, Munoz E, Valldeoriola F, Tolosa E. LRRK2 mutations in Spanish patients with Parkinson disease: frequency, clinical features, and incomplete penetrance. Arch Neurol. 2006;63:377–82. [PubMed]
- Giasson BI, Covy JP, Bonini NM, Hurtig HI, Farrer MJ, Trojanowski JQ, Van Deerlin VM. Biochemical and pathological characterization of Lrrk2. Ann Neurol. 2006;59:315–22. [PubMed]
- Gilks WP, Abou-Sleiman PM, Gandhi S, Jain S, Singleton A, Lees AJ, Shaw K, Bhatia KP, Bonifati V, Quinn NP, Lynch J, Healy DG, Holton JL, Revesz T, Wood NW. A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet. 2005;365:415–6. [PubMed]
- Gloeckner CJ, Kinkl N, Schumacher A, Braun RJ, O'Neill E, Meitinger T, Kolch W, Prokisch H, Ueffing M. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet. 2006;15:223–32. [PubMed]
- Goetz CG, Tanner CM, Klawans HL. Drug holiday in the management of Parkinson disease. Clin Neuropharmacol. 1982;5(4):351–64. [PubMed]
- Goldwurm S, Di Fonzo A, Simons EJ, Rohe CF, Zini M, Canesi M, Tesei S, Zecchinelli A, Antonini A, Mariani C, Meucci N, Sacilotto G, Sironi F, Salani G, Ferreira J, Chien HF, Fabrizio E, Vanacore N, Dalla Libera A, Stocchi F, Diroma C, Lamberti P, Sampaio C, Meco G, Barbosa E, Bertoli-Avella AM, Breedveld GJ, Oostra BA, Pezzoli G, Bonifati V. The G6055A (G2019S) mutation in LRRK2 is frequent in both early and late onset Parkinson's disease and originates from a common ancestor. J Med Genet. 2005;42:e65. [PMC free article ] [PubMed]
- Goldwurm S, Zini M, Di Fonzo A, De Gaspari D, Siri C, Simons EJ, van Doeselaar M, Tesei S, Antonini A, Canesi M, Zecchinelli A, Mariani C, Meucci N, Sacilotto G, Cilia R, Isaias IU, Bonetti A, Sironi F, Ricca S, Oostra BA, Bonifati V, Pezzoli G. LRRK2 G2019S mutation and Parkinson's disease: A clinical, neuropsychological and neuropsychiatric study in a large Italian sample. Parkinsonism Relat Disord. 2006;12:410–9. [PubMed]
- Goldwurm S, Zini M, Mariani L, Tesei S, Miceli R, Sironi F, Clementi M, Bonifati V, Pezzoli G. Evaluation of LRRK2 G2019S penetrance: relevance for genetic counseling in Parkinson disease. Neurology. 2007;68:1141–3. [PubMed]
- Gómez-Esteban JC, Lezcano E, Zarranz JJ, González C, Bilbao G, Lambarri I, Rodríguez O, Garibi J. Outcome of bilateral deep brain subthalamic stimulation in patients carrying the R1441G mutation in the LRRK2 dardarin gene. Neurosurgery. 2008;62:857–62. [PubMed]
- González-Fernández MC, Lezcano E, Ross OA, Gómez-Esteban JC, Gómez-Busto F, Velasco F, Alvarez-Alvarez M, Rodríguez-Martínez MB, Ciordia R, Zarranz JJ, Farrer MJ, Mata IF, de Pancorbo MM. Lrrk2-associated parkinsonism is a major cause of disease in Northern Spain. Parkinsonism Relat Disord. 2007;13:509–15. [PubMed]
- Gómez-Suaga P, Hilfiker S. LRRK2 as a modulator of lysosomal calcium homeostasis with downstream effects on autophagy. Autophagy. 2012;8:692–3. [PubMed]
- Gosal D, Ross OA, Wiley J, Irvine GB, Johnston JA, Toft M, Mata IF, Kachergus J, Hulihan M, Taylor JP, Lincoln SJ, Farrer MJ, Lynch T, Mark Gibson J. Clinical traits of LRRK2-associated Parkinson's disease in Ireland: a link between familial and idiopathic PD. Parkinsonism Relat Disord. 2005;11:349–52. [PubMed]
- Gotthardt K, Weyand M, Kortholt A, Van Haastert PJ, Wittinghofer A. Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase. EMBO J. 2008;27:2352. [PMC free article ] [PubMed]
- Greggio E, Jain S, Kingsbury A, Bandopadhyay R, Lewis P, Kaganovich A, van der Brug MP, Beilina A, Blackinton J, Thomas KJ, Ahmad R, Miller DW, Kesavapany S, Singleton A, Lees A, Harvey RJ, Harvey K, Cookson MR. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis. 2006;23:329–41. [PubMed]
- Greggio E, Zambrano I, Kaganovich A, Beilina A, Taymans JM, Daniëls V, Lewis P, Jain S, Ding J, Syed A, Thomas KJ, Baekelandt V, Cookson MR. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J Biol Chem. 2008;283:16906–14. [PMC free article ] [PubMed]
- Guo L, Gandhi PN, Wang W, Petersen RB, Wilson-Delfosse AL, Chen SG. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp Cell Res. 2007;313:3658–70. [PMC free article ] [PubMed]
- Haugarvoll K, Rademakers R, Kachergus JM, Nuytemans K, Ross OA, Gibson JM, Tan EK, Gaig C, Tolosa E, Goldwurm S, Guidi M, Riboldazzi G, Brown L, Walter U, Benecke R, Berg D, Gasser T, Theuns J, Pals P, Cras P, De Deyn PP, Engelborghs S, Pickut B, Uitti RJ, Foroud T, Nichols WC, Hagenah J, Klein C, Samii A, Zabetian CP, Bonifati V, Van Broeckhoven C, Farrer MJ, Wszolek ZK. Lrrk2 R1441C parkinsonism is clinically similar to sporadic Parkinson disease. Neurology. 2008;70:1456–60. [PMC free article ] [PubMed]
- Healy DG, Falchi M, O'Sullivan SS, Bonifati V, Durr A, Bressman S, Brice A, Aasly J, Zabetian CP, Goldwurm S, Ferreira JJ, Tolosa E, Kay DM, Klein C, Williams DR, Marras C, Lang AE, Wszolek ZK, Berciano J, Schapira AH, Lynch T, Bhatia KP, Gasser T, Lees AJ, Wood NW. International LRRK2 Consortium. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol. 2008;7:583–90. [PMC free article ] [PubMed]
- Hernandez DG, Paisan-Ruiz C, McInerney-Leo A, Jain S, Meyer-Lindenberg A, Evans EW, Berman KF, Johnson J, Auburger G, Schaffer AA, Lopez GJ, Nussbaum RL, Singleton AB. Clinical and positron emission tomography of Parkinson's disease caused by LRRK2. Ann Neurol. 2005;57:453–6. [PubMed]
- Herzig MC, Kolly C, Persohn E, Theil D, Schweizer T, Hafner T, Stemmelen C, Troxler TJ, Schmid P, Danner S, Schnell CR, Muelle M, Kinzel B, Grevot A, Bolognani F, Stirn M, Kuhn RR, Kaupmann K, van der Putten PH, Rovelli G, Shimshek DR. LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum Mol Genet. 2011;20:4209–23. [PMC free article ] [PubMed]
- Hentati F, Trinh J, Thompson C, Nosova E, Farrer MJ, Aasly JO. LRRK2 parkinsonism in Tunisia and Norway: a comparative analysis of disease penetrance. Neurology. 2014;83:568–9. [PMC free article ] [PubMed]
- Higashi S, Biskup S, West AB, Trinkaus D, Dawson VL, Faull RL, Waldvogel HJ, Arai H, Dawson TM, Moore DJ, Emson PC. Localization of Parkinson's disease-associated LRRK2 in normal and pathological human brain. Brain Res. 2007;1155:208–19. [PubMed]
- Holloway R, Frank S. Review: anticholinergic drugs improve motor function and disability in Parkinson disease. ACP J Club. 2004;140:15. [PubMed]
- Holloway RG, Shoulson I, Fahn S, Kieburtz K, Lang A, Marek K, McDermott M, Seibyl J, Weiner W, Musch B, Kamp C, Welsh M, Shinaman A, Pahwa R, Barclay L, Hubble J, LeWitt P, Miyasaki J, Suchowersky O, Stacy M, Russell DS, Ford B, Hammerstad J, Riley D, Standaert D, Wooten F, Factor S, Jankovic J, Atassi F, Kurlan R, Panisset M, Rajput A, Rodnitzky R, Shults C, Petsinger G, Waters C, Pfeiffer R, Biglan K, Borchert L, Montgomery A, Sutherland L, Weeks C, DeAngelis M, Sime E, Wood S, Pantella C, Harrigan M, Fussell B, Dillon S, Alexander-Brown B, Rainey P, Tennis M, Rost-Ruffner E, Brown D, Evans S, Berry D, Hall J, Shirley T, Dobson J, Fontaine D, Pfeiffer B, Brocht A, Bennett S, Daigneault S, Hodgeman K, O'Connell C, Ross T, Richard K, Watts A. Parkinson Study Group.; Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch Neurol. 2004;61:1044–53. [PubMed]
- Hristova AH, Koller WC. Early Parkinson's disease: what is the best approach to treatment. Drugs Aging. 2000;17:165–81. [PubMed]
- Hulihan MM, Ishihara-Paul L, Kachergus J, Warren L, Amouri R, Elango R, Prinjha RK, Upmanyu R, Kefi M, Zouari M, Sassi SB, Yahmed SB, El Euch-Fayeche G, Matthews PM, Middleton LT, Gibson RA, Hentati F, Farrer MJ. LRRK2 Gly2019Ser penetrance in Arab-Berber patients from Tunisia: a case-control genetic study. Lancet Neurol. 2008;7:591–4. [PubMed]
- Iaccarino C, Crosio C, Vitale C, Sanna G, Carrì MT, Barone P. Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum Mol Genet. 2007;16:1319–26. [PubMed]
- Imai Y, Gehrke S, Wang HQ, Takahashi R, Hasegawa K, Oota E, Lu B. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. Embo J. 2008;27:2432–43. [PMC free article ] [PubMed]
- Infante J, Rodriguez E, Combarros O, Mateo I, Fontalba A, Pascual J, Oterino A, Polo JM, Leno C, Berciano J. LRRK2 G2019S is a common mutation in Spanish patients with late-onset Parkinson's disease. Neurosci Lett. 2006;395:224–6. [PubMed]
- International Parkinson Disease Genomics Consortium; Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet. 2011;377:641–9. [PMC free article ] [PubMed]
- Ishihara L, Warren L, Gibson R, Amouri R, Lesage S, Durr A, Tazir M, Wszolek ZK, Uitti RJ, Nichols WC, Griffith A, Hattori N, Leppert D, Watts R, Zabetian CP, Foroud TM, Farrer MJ, Brice A, Middleton L, Hentati F. Clinical features of Parkinson disease patients with homozygous leucine-rich repeat kinase 2 G2019S mutations. Arch Neurol. 2006;63:1250–4. [PubMed]
- Ito G, Okai T, Fujino G, Takeda K, Ichijo H, Katada T, Iwatsubo T. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry. 2007;46:1380–8. [PubMed]
- Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR. LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochem J. 2007;405:307–17. [PMC free article ] [PubMed]
- Jenner P. Preventing and controlling dyskinesia in Parkinson’s disease—a view of current knowledge and future opportunities. Mov Disord. 2008;23 Suppl 3:S585–98. [PubMed]
- Kachergus J, Mata IF, Hulihan M, Taylor JP, Lincoln S, Aasly J, Gibson JM, Ross OA, Lynch T, Wiley J, Payami H, Nutt J, Maraganore DM, Czyzewski K, Styczynska M, Wszolek ZK, Farrer MJ, Toft M. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am J Hum Genet. 2005;76:672–80. [PMC free article ] [PubMed]
- Kay DM, Kramer P, Higgins D, Zabetian CP, Payami H. Escaping Parkinson's disease: a neurologically healthy octogenarian with the LRRK2 G2019S mutation. Mov Disord. 2005;20:1077–8. [PubMed]
- Kay DM, Zabetian CP, Factor SA, Nutt JG, Samii A, Griffith A, Bird TD, Kramer P, Higgins DS, Payami H. Parkinson's disease and LRRK2: frequency of a common mutation in U.S. movement disorder clinics. Mov Disord. 2006;21:519–23. [PubMed]
- Khan NL, Jain S, Lynch JM, Pavese N, Abou-Sleiman P, Holton JL, Healy DG, Gilks WP, Sweeney MG, Ganguly M, Gibbons V, Gandhi S, Vaughan J, Eunson LH, Katzenschlager R, Gayton J, Lennox G, Revesz T, Nicholl D, Bhatia KP, Quinn N, Brooks D, Lees AJ, Davis MB, Piccini P, Singleton AB, Wood NW. Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson's disease: clinical, pathological, olfactory and functional imaging and genetic data. Brain. 2005;128:2786–96. [PubMed]
- Lang AE, Lozano AM. Parkinson's disease. First of two parts. N Engl J Med. 1998a;339:1044–53. [PubMed]
- Lang AE, Lozano AM. Parkinson's disease. Second of two parts. N Engl J Med. 1998b;339:1130–43. [PubMed]
- Langston JW. The Parkinson's complex: parkinsonism is just the tip of the iceberg. Ann Neurol. 2006;59:591–6. [PubMed]
- Latourelle JC, Sun M, Lew MF, Suchowersky O, Klein C, Golbe LI, Mark MH, Growdon JH, Wooten GF, Watts RL, Guttman M, Racette BA, Perlmutter JS, Ahmed A, Shill HA, Singer C, Goldwurm S, Pezzoli G, Zini M, Saint-Hilaire MH, Hendricks AE, Williamson S, Nagle MW, Wilk JB, Massood T, Huskey KW, Laramie JM, DeStefano AL, Baker KB, Itin I, Litvan I, Nicholson G, Corbett A, Nance M, Drasby E, Isaacson S, Burn DJ, Chinnery PF, Pramstaller PP, Al-hinti J, Moller AT, Ostergaard K, Sherman SJ, Roxburgh R, Snow B, Slevin JT, Cambi F, Gusella JF, Myers RH. The Gly2019Ser mutation in LRRK2 is not fully penetrant in familial Parkinson's disease: the GenePD study. BMC Med. 2008;6:32. [PMC free article ] [PubMed]
- Lee S, Liu HP, Lin WY, Guo H, Lu B. LRRK2 kinase regulates synaptic morphology through distinct substrates at the presynaptic and postsynaptic compartments of the Drosophila neuromuscular junction. J Neurosci. 2010a;30:16959–69. [PMC free article ] [PubMed]
- Lee BD, Shin JH, VanKampen J, Petrucelli L, West AB, Ko HS, Lee YI, Maguire-Zeiss KA, Bowers WJ, Federoff HJ, Dawson VL, Dawson TM. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease. Nat Med. 2010b;16:998–1000. [PMC free article ] [PubMed]
- Lesage S, Durr A, Tazir M, Lohmann E, Leutenegger AL, Janin S, Pollak P, Brice A. LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. N Engl J Med. 2006;354:422–3. [PubMed]
- Lesage S, Ibanez P, Lohmann E, Pollak P, Tison F, Tazir M, Leutenegger AL, Guimaraes J, Bonnet AM, Agid Y, Durr A, Brice A. G2019S LRRK2 mutation in French and North African families with Parkinson's disease. Ann Neurol. 2005;58:784–7. [PubMed]
- Lewis PA, Greggio E, Beilina A, Jain S, Baker A, Cookson MR. The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res Commun. 2007;357:668–71. [PMC free article ] [PubMed]
- Li X, Tan YC, Poulose S, Olanow CW, Huang XY, Yue Z. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants. J Neurochem. 2007;103:238–47. [PMC free article ] [PubMed]
- Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V, Zhou C, Geghman K, Bogdanov M, Przedborski S, Beal MF, Burke RE, Li C. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat Neurosci. 2009;12:826–8. [PMC free article ] [PubMed]
- Lill CM, Roehr JT, McQueen MB, Kavvoura FK, Bagade S, Schjeide BM, Schjeide LM, Meissner E, Zauft U, Allen NC, Liu T, Schilling M, Anderson KJ, Beecham G, Berg D, Biernacka JM, Brice A, DeStefano AL, Do CB, Eriksson N, Factor SA, Farrer MJ, Foroud T, Gasser T, Hamza T, Hardy JA, Heutink P, Hill-Burns EM, Klein C, Latourelle JC, Maraganore DM, Martin ER, Martinez M, Myers RH, Nalls MA, Pankratz N, Payami H, Satake W, Scott WK, Sharma M, Singleton AB, Stefansson K, Toda T, Tung JY, Vance J, Wood NW, Zabetian CP. Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: The PDGene database. PLoS Genet. 2012;8:e1002548. [PMC free article ] [PubMed]
- Lu CS, Simons EJ, Wu-Chou YH, Fonzo AD, Chang HC, Chen RS, Weng YH, Rohe CF, Breedveld GJ, Hattori N, Gasser T, Oostra BA, Bonifati V. The LRRK2 I2012T, G2019S, and I2020T mutations are rare in Taiwanese patients with sporadic Parkinson's disease. Parkinsonism Relat Disord. 2005;11:521–2. [PubMed]
- Lu CS, Wu-Chou YH, van Doeselaar M, Simons EJ, Chang HC, Breedveld GJ, Di Fonzo A, Chen RS, Weng YH, Lai SC, Oostra BA, Bonifati V. The LRRK2 Arg1628Pro variant is a risk factor for Parkinson's disease in the Chinese population. Neurogenetics. 2008;9:271–6. [PubMed]
- Luzón-Toro B, Rubio de la Torre E, Delgado A, Pérez-Tur J, Hilfiker S. Mechanistic insight into the dominant mode of the Parkinson's disease-associated G2019S LRRK2 mutation. Hum Mol Genet. 2007;16:2031–9. [PubMed]
- MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, Abeliovich A. The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron. 2006;52:587–93. [PubMed]
- Marjama-Lyons JM, Koller WC. Parkinson's disease: Update in diagnosis and symptom management. Geriatrics. 2001;56:24–5. [PubMed]
- Mata IF, Cosentino C, Marca V, Torres L, Mazzetti P, Ortega O, Raggio V, Aljanati R, Buzó R, Yearout D, Dieguez E, Zabetian CP. LRRK2 mutations in patients with Parkinson's disease from Peru and Uruguay. Parkinsonism Relat Disord. 2009;15:370–3. [PubMed]
- Mata IF, Kachergus JM, Taylor JP, Lincoln S, Aasly J, Lynch T, Hulihan MM, Cobb SA, Wu RM, Lu CS, Lahoz C, Wszolek ZK, Farrer MJ. Lrrk2 pathogenic substitutions in Parkinson's disease. Neurogenetics. 2005a;6:171–7. [PubMed]
- Mata IF, Ross OA, Kachergus J, Huerta C, Ribacoba R, Moris G, Blazquez M, Guisasola LM, Salvador C, Martinez C, Farrer M, Alvarez V. LRRK2 mutations are a common cause of Parkinson's disease in Spain. Eur J Neurol. 2006a;13:391–4. [PubMed]
- Mata IF, Taylor JP, Kachergus J, Hulihan M, Huerta C, Lahoz C, Blazquez M, Guisasola LM, Salvador C, Ribacoba R, Martinez C, Farrer M, Alvarez V. LRRK2 R1441G in Spanish patients with Parkinson's disease. Neurosci Lett. 2005b;382:309–11. [PubMed]
- Mata IF, Wedemeyer WJ, Farrer MJ, Taylor JP, Gallo KA. LRRK2 in Parkinson's disease: protein domains and functional insights. Trends Neurosci. 2006b;29:286–93. [PubMed]
- Miklossy J, Arai T, Guo JP, Klegeris A, Yu S, McGeer EG, McGeer PL. LRRK2 expression in normal and pathologic human brain and in human cell lines. J Neuropathol Exp Neurol. 2006;65:953–63. [PubMed]
- Mirelman A, Heman T, Yasinovsky K, Thaler A, Gurevich T, Marder K, Bressman S, Bar-Shira A, Orr-Urtreger A, Giladi N, Hausdorff JM. LRRK2 Ashkenazi Jewish Consortium. Fall risk and gait in Parkinson's disease: the role of the LRRK2 G2019S mutation. Mov Disord. 2013;28(12):1683–90. [PubMed]
- Munhoz RP, Teive HA, Francisco AN, Raskin S, Rogaeva E. Unilateral pallidotomy in a patient with parkinsonism and G2019S LRRK2 mutation. Mov Disord. 2009;24:791–2. [PubMed]
- Nandhagopal R, Mak E, Schulzer M, McKenzie J, McCormick S, Sossi V, Ruth TJ, Strongosky A, Farrer MJ, Wszolek ZK, Stoessl AJ. Progression of dopaminergic dysfunction in a LRRK2 kindred: a multitracer PET study. Neurology. 2008;71:1790–5. [PMC free article ] [PubMed]
- Nichols WC, Pankratz N, Hernandez D, Paisan-Ruiz C, Jain S, Halter CA, Michaels VE, Reed T, Rudolph A, Shults CW, Singleton A, Foroud T. Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease. Lancet. 2005;365:410–2. [PubMed]
- Olanow CW, Stocchi F. COMT inhibitors in Parkinson's disease: can they prevent and/or reverse levodopa-induced motor complications? Neurology. 2004;62 Suppl 1:72–81. [PubMed]
- Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M, Hunt AL, Klein C, Henick B, Hailpern SM, Lipton RB, Soto-Valencia J, Risch N, Bressman SB. LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N Engl J Med. 2006;354:424–5. [PubMed]
- Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, Lopez de Munain A, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Marti-Masso JF, Perez-Tur J, Wood NW, Singleton AB. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron. 2004;44:595–600. [PubMed]
- Paisan-Ruiz C, Saenz A, Lopez de Munain A, Marti I, Martinez Gil A, Marti-Masso JF, Perez-Tur J. Familial Parkinson's disease: clinical and genetic analysis of four Basque families. Ann Neurol. 2005;57:365–72. [PubMed]
- Perry G, Zhu X, Babar AK, Siedlak SL, Yang Q, Ito G, Iwatsubo T, Smith MA, Chen SG. Leucine-rich repeat kinase 2 colocalizes with alpha-synuclein in Parkinson's disease, but not tau-containing deposits in tauopathies. Neurodegener Dis. 2008;5:222–4. [PMC free article ] [PubMed]
- Piccoli G, Condliffe SB, Bauer M, Giesert F, Boldt K, De Astis S, Meixner A, Sarioglu H, Vogt-Weisenhorn DM, Wurst W, Gloeckner CJ, Matteoli M, Sala C, Ueffing M. LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J Neurosci. 2011;31:2225–37. [PubMed]
- Plowey ED, Cherra SJ, Liu YJ, Chu CT. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem. 2008;105:1048–56. [PMC free article ] [PubMed]
- Rajput A, Dickson DW, Robinson CA, Ross OA, Dachsel JC, Lincoln SJ, Cobb SA, Rajput ML, Farrer MJ. Parkinsonism, Lrrk2 G2019S, and tau neuropathology. Neurology. 2006;67:1506–8. [PubMed]
- Ross OA, Spanaki C, Griffith A, Lin CH, Kachergus J, Haugarvoll K, Latsoudis H, Plaitakis A, Ferreira JJ, Sampaio C, Bonifati V, Wu RM, Zabetian CP, Farrer MJ. Haplotype analysis of Lrrk2 R1441H carriers with parkinsonism. Parkinsonism Relat Disord. 2009;15:466–7. [PMC free article ] [PubMed]
- Ross OA, Soto-Ortolaza AI, Heckman MG, Aasly JO, Abahuni N, Annesi G, Bacon JA, Bardien S, Bozi M, Brice A, Brighina L, Van Broeckhoven C, Carr J, Chartier-Harlin MC, Dardiotis E, Dickson DW, Diehl NN, Elbaz A, Ferrarese C, Ferraris A, Fiske B, Gibson JM, Gibson R, Hadjigeorgiou GM, Hattori N, Ioannidis JP, Jasinska-Myga B, Jeon BS, Kim YJ, Klein C, Kruger R, Kyratzi E, Lesage S, Lin CH, Lynch T, Maraganore DM, Mellick GD, Mutez E, Nilsson C, Opala G, Park SS, Puschmann A, Quattrone A, Sharma M, Silburn PA, Sohn YH, Stefanis L, Tadic V, Theuns J, Tomiyama H, Uitti RJ, Valente EM, van de Loo S, Vassilatis DK, Vilariño-Güell C, White LR, Wirdefeldt K, Wszolek ZK, Wu RM, Farrer MJ. Genetic Epidemiology Of Parkinson's Disease (GEO-PD) Consortium; Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case-control study. Lancet Neurol. 2011;10:898–908. [PMC free article ] [PubMed]
- Ross OA, Toft M, Whittle AJ, Johnson JL, Papapetropoulos S, Mash DC, Litvan I, Gordon MF, Wszolek ZK, Farrer MJ, Dickson DW. Lrrk2 and Lewy body disease. Ann Neurol. 2006;59:388–93. [PubMed]
- Ross OA, Wu YR, Lee MC, Funayama M, Chen ML, Soto AI, Mata IF, Lee-Chen GJ, Chen CM, Tang M, Zhao Y, Hattori N, Farrer MJ, Tan EK, Wu RM. Analysis of Lrrk2 R1628P as a risk factor for Parkinson's disease. Ann Neurol. 2008;64:88–92. [PubMed]
- Santos-Rebouças CB, Abdalla CB, Baldi FJ, Martins PA, Corrêa JC, Gonçalves AP, Cunha MS, Borges MB, Pereira JS, Laks J, Pimentel MM. Co-occurrence of sporadic parkinsonism and late-onset Alzheimer's disease in a Brazilian male with the LRRK2 p.G2019S mutation. Genet Test. 2008;12:471–3. [PubMed]
- Saunders-Pullman R, Lipton RB, Senthil G, Katz M, Costan-Toth C, Derby C, Bressman S, Verghese J, Ozelius LJ. Increased frequency of the LRRK2 G2019S mutation in an elderly Ashkenazi Jewish population is not associated with dementia. Neurosci Lett. 2006;402:92–6. [PubMed]
- Schüpbach M, Lohmann E, Anheim M, Lesage S, Czernecki V, Yaici S, Worbe Y, Charles P, Welter ML, Pollak P, Dürr A, Agid Y, Brice A. Subthalamic nucleus stimulation is efficacious in patients with Parkinsonism and LRRK2 mutations. Mov Disord. 2007;22:119–22. [PubMed]
- Simón-Sánchez J, Martí-Massó JF, Sánchez-Mut JV, Paisán-Ruiz C, Martínez-Gil A, Ruiz-Martínez J, Sáenz A, Singleton AB, López de Munain A, Pérez-Tur J. Parkinson's disease due to the R1441G mutation in Dardarin: a founder effect in the Basques. Mov Disord. 2006;21:1954–9. [PubMed]
- Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM, Ross CA. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci. 2006;9:1231–3. [PubMed]
- Smith WW, Pei Z, Jiang H, Moore DJ, Liang Y, West AB, Dawson VL, Dawson TM, Ross CA. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci U S A. 2005;102:18676–81. [PMC free article ] [PubMed]
- Tan EK, Peng R, Teo YY, Tan LC, Angeles D, Ho P, Chen ML, Lin CH, Mao XY, Chang XL, Prakash KM, Liu JJ, Au WL, Le WD, Jankovic J, Burgunder JM, Zhao Y, Wu RM. Multiple LRRK2 variants modulate risk of Parkinson disease: a Chinese multicenter study. Hum Mutat. 2010;31:561–8. [PubMed]
- Tan EK, Tan LC, Lim HQ, Li R, Tang M, Yih Y, Pavanni R, Prakash KM, Fook-Chong S, Zhao Y. LRRK2 R1628P increases risk of Parkinson's disease: replication evidence. Hum Genet. 2008;124:287–8. [PubMed]
- Tan EK, Zhao Y, Skipper L, Tan MG, Di Fonzo A, Sun L, Fook-Chong S, Tang S, Chua E, Yuen Y, Tan L, Pavanni R, Wong MC, Kolatkar P, Lu CS, Bonifati V, Liu JJ. The LRRK2 Gly2385Arg variant is associated with Parkinson's disease: genetic and functional evidence. Hum Genet. 2006;120:857–63. [PubMed]
- Taylor JP, Mata IF, Farrer MJ. LRRK2: a common pathway for parkinsonism, pathogenesis and prevention? Trends Mol Med. 2006;12:76–82. [PubMed]
- Toft M, Mata IF, Kachergus JM, Ross OA, Farrer MJ. LRRK2 mutations and Parkinsonism. Lancet. 2005;365:1229–30. [PubMed]
- Tomiyama H, Li Y, Funayama M, Hasegawa K, Yoshino H, Kubo S, Sato K, Hattori T, Lu CS, Inzelberg R, Djaldetti R, Melamed E, Amouri R, Gouider-Khouja N, Hentati F, Hatano Y, Wang M, Imamichi Y, Mizoguchi K, Miyajima H, Obata F, Toda T, Farrer MJ, Mizuno Y, Hattori N. Clinicogenetic study of mutations in LRRK2 exon 41 in Parkinson's disease patients from 18 countries. Mov Disord. 2006;21:1102–8. [PubMed]
- Tong Y, Giaime E, Yamaguchi H, Ichimura T, Liu Y, Si H, Cai H, Bonventre JV, Shen J. Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway. Mol Neurodegener. 2012;7:2. [PMC free article ] [PubMed]
- Trinh J, Amouri R, Duda JE, Morley JF, Read M, Donald A, Vilarino-Guell C, Thompson C, Szu Tu C, Gustavsson EK, Sassi SB, Hentati E, Zouari M, Farhat E, Nabli F, Hentati F, Farrer MJ. A comparative study of Parkinson’s disease and leucine-rich repeat kinase 2 p.G2019S parkinsonism. Neurobiol Aging. 2014a;35:1125–31. [PubMed]
- Trinh J, Guella I, Farrer M (2014b) Disease penetrance of late-onset parkinsonism: a meta-analysis. JAMA Neurol. Epub ahead of print. [PubMed]
- Ujiie S, Hatano T, Kubo S, Imai S, Sato S, Uchihara T, Yagishita S, Hasegawa K, Kowa H, Sakai F, Hattori N. LRRK2 I2020T mutation is associated with tau pathology. Parkinsonism Relat Disord. 2012;18:819–23. [PubMed]
- van Egmond WN, Kortholt A, Plak K, Bosgraaf L, Bosgraaf S, Keizer-Gunnink I, van Haastert PJ. Intramolecular Activation Mechanism of the Dictyostelium LRRK2 Homolog Roco Protein GbpC. J Biol Chem. 2008;283:30412–20. [PMC free article ] [PubMed]
- West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. 2005;102:16842–7. [PMC free article ] [PubMed]
- Williams-Gray CH, Goris A, Foltynie T, Brown J, Maranian M, Walton A, Compston DA, Sawcer SJ, Barker RA. Prevalence of the LRRK2 G2019S mutation in a UK community based idiopathic Parkinson's disease cohort. J Neurol Neurosurg Psychiatry. 2006;77:665–7. [PMC free article ] [PubMed]
- Wszolek ZK, Pfeiffer RF, Tsuboi Y, Uitti RJ, McComb RD, Stoessl AJ, Strongosky AJ, Zimprich A, Muller-Myhsok B, Farrer MJ, Gasser T, Calne DB, Dickson DW. Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology. 2004;62:1619–22. [PubMed]
- Zabetian CP, Morino H, Ujike H, Yamamoto M, Oda M, Maruyama H, Izumi Y, Kaji R, Griffith A, Leis BC, Roberts JW, Yearout D, Samii A, Kawakami H. Identification and haplotype analysis of LRRK2 G2019S in Japanese patients with Parkinson disease. Neurology. 2006;67:697–9. [PubMed]
- Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Muller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44:601–7. [PubMed]
Chapter Notes
Author Notes
Dr. Ross currently directs the Division of the Neurogenetics at Mayo Clinic Jacksonville, and the Genetic Core of a Morris K Udall Center of Excellence for the Genetics of Parkinson's disease. Current research is supported through the National Institutes of Health (NINDS), the Michael J Fox Foundation, and the Mayo Foundation.
Dr. Farrer and colleagues' research interests are focused on the genetic analysis of parkinsonism and related movement and memory disorders. Research interests include statistical and molecular genetics, functional genomics, and applied neurobiology, including the creation of animal models of parkinsonism based on molecular etiology. Dr. Farrer reports (a) International Publication Number WO 2006/045392 A2; (b) International Publication Number WO 2006/068492 A1; (c) US Patent Number 7,544,786; and (d) Norwegian patent 323175, related to LRRK2. Dr Farrer reports salary and royalty payment from the Pharmaceutical Industry for sponsored research on Lrrk2 biology and mouse model characterization. As of August 2008, Mayo and Dr. Farrer have received royalties from the licensing of these technologies of greater than $10,000, the US federal threshold for significant financial interest.
Acknowledgments
- Morris K Udall Center of Excellence for the Genetics of Parkinson's disease
- Current research supported through the National Institutes of Health (NINDS, NIEHS and NIA), the Michael J Fox Foundation, and the Mayo Foundation
- All the individuals involved in our research including the many scientists, clinicians, and especially the patients and their families
Author History
Matthew Farrer, PhD (2006-present)
Ilaria Guella, PhD (2014-present)
Owen A Ross, PhD (2006-present)
Jeremy T Stone, BSc; Mayo Clinic (2006-2010)
Joanne Trinh, BSc (2014-present)
Revision History
- 11 December 2014 (me) Comprehensive update posted live
- 13 September 2012 (me) Comprehensive update posted live
- 29 April 2010 (me) Comprehensive update posted live
- 2 November 2006 (me) Review posted to live Web site
- 6 July 2006 (mf) Original submission