【初稿】 遗传性共济失调概述

Hereditary Ataxia Overview

英文原文链接

, MD
Seattle VA Medical Center
Departments of Neurology and Medicine
University of Washington
Seattle, Washington

翻译者:孔梓任,弓孟春

Initial Posting: 2017-08-22 05:36:14; Last Update: 2017-08-23 03:12:39.

摘要

临床特点.

遗传性共济失调是一类遗传性疾病,其特征表现为缓慢进展的步态不协调,并常伴随手、言语和眼睛运动的协调不良。通常患者会发生小脑的萎缩。 在本GeneReview中,遗传性共济失调按和发生致病性变异的 (或 ),进行分类。

诊断/检测.

遗传性共济失调必须与许多获得性(非遗传性)共济失调区分开。 遗传性共济失调可通过家族史、体格检查、神经影像学和来进行诊断。

遗传咨询.

遗传性共济失调可以以常染色体显性常染色体隐性伴X染色体等方式遗传。 遗传咨询和风险评估取决于个体中遗传性共济失调的具体原因。

患者管理.

对症状的治疗: 使用用于步态共济失调的手杖,步行器和轮椅; 使用特殊装置协助进行书写,按扣和餐具的使用;   对有严重发音障碍和严重语音障碍的人,使用语音治疗和/或基于计算机的设备。

对主要症状的预防: 除了维生素E治疗用于具有维生素E缺乏的共济失调(AVED)之外,没有针对遗传性共济失调的特异性治疗。

定义

遗传性共济失调的临床症状

遗传性共济失调在临床上表现为运动时协调性差,和广泛的、不协调、不稳定的步态。 患者常存在肢体和言语(构音障碍)的不协调。

遗传性共济失调可能由以下一个或几个组合而导致:

  • 小脑及其相关系统的功能障碍
  • 脊髓的病变
  • 外周感觉的缺失

遗传性共济失调的诊断

遗传性共济失调需要以下内容才能做出诊断:

  • 通过神经学检查发现疾病典型临床症状和体征,包括不协调的步态和手指/手的运动,通常伴随构音障碍和眼球震颤。
  • 疾病具有遗传性:
    • 阳性的共济失调家族史;
    • 与遗传性共济失调相关的致病基因的突变;
    • 临床有着遗传性共济失调的特点。
      注:在没有共济失调家族史的一些个体中,如果所有可用的遗传测试的结果是正常的,则可能不可能建立共济失调是遗传性的判断。

遗传性共济失调的鉴别诊断

遗传性共济失调的鉴别诊断包括获得性的非遗传性共济失调,如酒精中毒,维生素缺乏,多发性硬化,血管疾病,原发性或转移性肿瘤,或与卵巢、乳腺或肺的隐匿性癌相关的副肿瘤性疾病。

在具有共济失调的每个个体中,都需要考虑获得性共济失调的可能性,以便获得特定的治疗[Shakkottai & Fogel 2013]。

遗传性共济失调的发病率

常染色体显性小脑共济失调(ADCAs)的发病率约为1-5:100,000人[van de Warrenburg et al 2002, Ruano et al 2014]。

常染色体显性共济失调中,SCA3是世界上最常见的,其次是SCA1,2,6和7(见图 1)。

图 1.  SCA不同亚型的世界分布 [Schöls et al 1997, Moseley et al 1998, Saleem et al 2000, Storey et al 2000, Tang et al 2000, Maruyama et al 2002, Silveira et al 2002, van de Warrenburg et al 2002, Dryer et al 2003, Brusco et al 2004, (更多.).

图1.

SCA不同亚型的世界分布 [Schöls et al 1997, Moseley et al 1998, Saleem et al 2000, Storey et al 2000, Tang et al 2000, Maruyama et al 2002, Silveira et al 2002, van de Warrenburg et al 2002, Dryer et al 2003, Brusco et al 2004, (更多.).

/ 600223 SCA5 SPTBN2
  • 早发性
  • 慢病程
有时被称为 Lincoln共济失调;寿命正常 Ranum et al [1994], Stevanin et al [1999], Bürk et al [2004], Ikeda et al [2006]
/ 600224SCA6 5 CACNA1A
  • 有时为阵发性共济失调
  • 疾病进展非常缓慢
通常在成人时期发作;寿命正常 183086SCA7 ATXN7
  • 视网膜视力丧失
通常快速进展;寿命缩短 164500SCA8 ATXN8
  • 进展缓慢
  • 有时为快速DTRs,振动觉减弱
  • 少数情况下会出现认知障碍
  608768 SCA9 未指定       SCA10 ATXN10
  • 偶尔癫痫发作
在墨西哥创始人中众多 603516SCA11 TTBK2
  • 温和
  • 有走动能力
  604432SCA12 PPP2R2B
  • 缓慢进展的共济失调
  • 30余岁时出现动作颤抖
  • 反射亢进
  • 不易察觉的帕金森病的可能
  • 认知/精神疾病,包括老年痴呆症
  604326SCA13 KCNC3
  • 轻度智力障碍
  • 身材矮小
  605259SCA14 PRKCG
  • 早期轴肌痉挛
  605361SCA15 ITPR1
  • 纯共济失调
  • 非常缓慢的进展
  606658 SCA16 ITPR1
  • 头部震颤
  Miyoshi et al [2001], Miura et al [2006]SCA17 TBP
  • 精神衰退
  • 偶尔舞蹈症、肌张力障碍、肌阵挛癫痫
  607136 SCA18 7q22-q32
  • 早期的感觉/运动神经病患者的共济失调
  • 眼球震颤
  • 构音障碍
  • 腱反射减弱
  Brkanac et al [2002], Brkanac et al [2009]
/ 607458 SCA19/22 KCND3
  • 进展缓慢
  • 认知障碍较为少见
  • 肌阵挛
  • 反射亢进
  Schelhaas et al [2001], Verbeek et al [2002], Chung et al [2003], Chung & Soong [2004], Schelhaas et al [2004], Duarri et al [2012], Lee et al [2012]
/ 607346SCA20 11q12
  • 早期构音障碍
  • 痉挛性发声障碍
  • 反射亢进
  • 运动迟缓
  608687 SCA21 TMEM240
  • 轻度到严重的早发性认知功能障碍
  Devos et al [2001], Vuillaume et al [2002], Delplanque et al [2014]
/ 607454 SCA23 PDYN
  • 构音障碍
  • 异常眼动
  • 振动觉和位置感觉的减弱
  Verbeek et al [2004], Bakalkin et al [2010]
/ 610245 SCA25 SCA25
  • 感觉神经病变
  Stevanin et al [2003]
/ 608703 SCA26 EEF2
  • 构音障碍
  • 不规则的视觉追求
  Yu et al [2005], Hekman et al [2012]
/ 609306 SCA27 FGF14
  • 早发性震颤
  • 运动障碍
  • 认知减退
  van Swieten et al [2003], Brusse et al [2006]
/ 609307SCA28 6 AFG3L2
  • 眼球震颤
  • 眼肌瘫痪
  • 上睑下垂
  • 腱反射亢进
  Svenstrup et al [2017]
/ 610246 SCA29 ITPR1
  • 学习欠缺
  Dudding et al [2004],
Shadrina et al [2016]
/ 117360 SCA30 4q34.3-q35.1
  • 反射亢进
  Storey et al [2009]
/ 613371 SCA31 4 BEAN1
  • 感觉正常
在日本较为普遍 Nagaoka et al [2000], Sato et al [2009], Sakai et al [2010], Edener et al [2011]
/ 117210 SCA34 ELOVL4
  • 皮肤改变在成年消失
  Cadieux-Dion et al [2014]
/ 133190 SCA35 TGM6
  • 反射亢进
  • Babinski 反射
  Wang et al [2010]
/ 613908SCA36 NOP56
  • 肌束颤动
  • 舌肌萎缩
  • 反射亢进
  614153 SCA37 1p32
  • 垂直眼动异常
  Serrano-Munuera et al [2013] SCA38 ELOVL5
  • 成人发病
  • 轴突神经病
  Di Gregorio et al [2014] SCA40 CCDC88C
  • 成人发病
  • 反射活跃
  • 痉挛
  Tsoi et al [2014]
/ 616053DRPLA ATN1
  • 舞蹈症
  • 癫痫
  • 痴呆
  • 肌阵挛
类似 Huntington 病; 在日本更为常见n 125370 SCA42 CACNA1G
  • 轻度锥体束征
  • 眼球追踪运动
p.Arg175His 创建者突变 Coutelier et al [2015a]
/ 616795 ADCADN DNMT1
  • 耳聋
  • 感觉丧失
  • 嗜睡
  Klein et al [2011], Klein et al [2013] 髓鞘形成不足脑白质病 TUBB4A
  • 低髓鞘化
  • 基底神经节萎缩
  • 强直
  • 肌紧张不足
  • 舞蹈症
  Hamilton et al [2014], Miyatake et al [2014]
/ 612438 GRID2-相关脊髓小脑共济失调 GRID2
  • 认知迟缓
  • 异常眼动
  • 听力丧失
很少 AD; 主要为常染色体隐性遗传 7 Coutelier et al [2015b] 纯小脑共济失调 C9orf72 8 其他家庭成员有额颞叶痴呆或运动神经疾病. 9   Corcia et al [2016] 小脑萎缩伴癫痫性脑病变 FGF12
  • 小儿癫痫
  • 智力缺陷
  • 小头畸形
  Siekierska et al [2016] 突发性共济失调 ATP1A3
  • 小脑萎缩
等位基因异常,见注10 Sweadner et al [2016]

脊髓小脑共济失调: OMIM 表型系列,在OMIM中查看与此相关的基因

  1. 未知时给出了染色体
  2. 均伴有步态失调。
  3. 没有GeneReview时给出了参考文献。
  4. CA31由复杂五核苷酸(TGGAA)引起的TK2和BEAN的内含子中的重复的对于SCA31发病机理而言是关键的[Sato et al 2009]。 SCA31不是在相同区域(16q22.1)中的SCA4的等位基因[Edener et al 2011]。
  5. SCA 6 是 EA2的等位基因 (见 表 2) 和 I型家族偏瘫性偏头痛
  6. SPAX5的等位基因
  7. 表 3.
  8. C9orf72 hexarepeat 的扩增与单基因的纯小脑共济失调相关 [Corcia et al 2016]。
  9. C9orf72 hexarepeat的扩增通常与 is usually associated 肌萎缩侧索硬化或额叶痴呆有关。
  10. ATP1A3-相关神经疾病谱还包括快速发作性肌张力障碍帕金森综合征(RDP),儿童交替性偏瘫(AHC)和小脑共济失调,孤立性视网膜病变,视网膜萎缩和感觉神经性听力损失(CAPOS)综合征。

 

ADCA个别亚型的流行可能因区域而异,通常由于奠基者效应。如,

核苷酸重复障碍。 在发生CAG三核苷酸重复的常染色体显性共济失调患者中可进行预判表 1)。预判是指在家族的后续世代中,疾病发病较早、严重性增加。 在疾病中,预判由于基因传递到后代而发生的CAG重复数目的扩增而导致。 ATN1 (DRPLA)和ATXN7 (SCA7) 具有特别不稳定的CAG重复序列[La Spada 1997, Nance 1997]。 在SCA7中,预判可能极端到早发性严重疾病的儿童在受影响的父母或祖父母患有症状之前就死于疾病并发症。 (参见遗传咨询。)

虽然我们比较关注预判扩增的现象,值得一提的是三核苷酸重复的数目也可以保持稳定或甚至在传递到后代时收缩。

 

阵发性共济失调

阵发性共济失调的特征是一段时间之内(几分钟到几小时)出现不稳定步态,通常伴随眼球震颤或构音障碍 [Jen et al 2007]。 在某些亚型中可能发生心肌病,眩晕或听力损失。 在疾病进程的后期可能出现永久性共济失调甚至小脑萎缩。

表 2.

阵发性共济失调: 分子遗传学 & 临床特征

疾病基因 / 位点 1可供区别的临床特征参考文献 2 / OMIM 链接
EA1KCNA1
  • 步态共济失调
  • 肌纤维震颤
  • 持续数秒到数分钟的袭击;包括惊吓或运动
  • 无眩晕出现
160120
EA2 3CACNA1A
  • 步态共济失调
  • 眼球震颤
  • ;持续数秒到数分钟的袭击;包括体态改变
  • 眩晕
  • 晚期出现永久性共济失调
108500
EA3 41q42
  • 成人发作
  • 眩晕
  • 耳鸣
Cader et al [2005]
/ 606554
EA4 5--
  • 成人发作
  • 小脑有病理记录
Steckley et al [2001], Jen et al [2007], Merrill et al [2016]
/ 606552
EA5CACNB4
  • 儿童至成年期均可发作
Escayg et al [2000], Jen et al [2007]
/ 613855
EA6SLC1A3
  • 癫痫
  • 偏头痛
  • 儿童发作
de Vries et al [2009], Winter et al [2012]
/ 612656
EA719q13
  • 眩晕
  • 虚弱
  • ? 癫痫
  • 儿童至成年期均可发作
Kerber et al [2007]
/ 611907
发作性共济失调的新生儿癫痫SCN2A
  • 新生儿癫痫
  • 晚发发作性共济失调
  • 自闭症
  • 肌张力下降
  • 肌张力障碍
Schwarz et al [2016], Leach et al [2016]
CAPOS 症ATP1A3
  • 小脑共济失调
  • 反射消失
  • 弓形足
  • 视神经萎缩
  • 感觉性听力丧失
  • 交替的偏瘫
ATP1A3-相关神经系统疾病
 

阵发性共济失调:OMIM表型系列,在OMIM中查看与此相关的基因

  1. 未知时给出了染色体
  2. 没有GeneReview时给出了参考文献。
  3. EA2是 SCA6的等位基因 (见表 1) 和 I型家族偏瘫性偏头痛
  4. 一个单独的有 EA3的家庭 (周期性前庭小脑性共济失调伴有缺陷的平滑移动)
  5. 北卡罗来纳州一个单独的有 EA4的家庭 (发作性共济失调伴眩晕和耳鸣)

常染色体隐性遗传性共济失调

常染色体隐性遗传性共济失调参见 表 3:

  • 表的第一部分列出了相对常见(即在> 5个家族中被发现,如FRDA、AOA1、AOA2和ATM等)或可治疗的(例如CTX、Refsum综合征和AVED)或常见于特定种族群体(例如法国人 - 加拿大人的ARSACS)的常染色体隐性共济失调。
  • 表的第二部分列出了相对不常见的常染色体隐性共济失调(即在1-5个家庭中被发现) [Musselman et al 2014]。

它们的整体情况综述可见Embiruçu et al [2009]

注意,与由许多相关基因之一的双等位基因致病性变体引起的共济失调和/或小脑发育不良相关的常染色体隐性障碍,不包括在本讨论和表 3中。例如:

表 3.

常染色体隐性小脑共济失调:单基因疾病

基因 / 位点 1疾病可供区别的临床特征其它参考文献 / OMIM 链接
更为常见和/或可治愈的 2
ANO10常染色体隐性脊髓小脑共济失调 10 (SCAR10)
  • 眼球震颤
  • 肌束挛缩
  • 肌肉痉挛
 Vermeer et al [2010], Renaud et al [2014]
/ 613728
APTXI型动眼失用性共济失调 (AOA1)
  • 动眼失用症
  • 手足舞蹈症
  • 轻度智力障碍
  • 低蛋白血症
 208920
ATM毛细血管扩张性共济失调
  • 毛细血管扩张
  • 免疫力降低
  • 癌症
  • 染色体不稳定
  • 甲胎蛋白升高
 208900
C10orf2婴儿型脊髓小脑共济失调 (IOSCA)
  • 周围神经病变y
  • 手足徐动症
  • 视神经萎缩
  • 耳聋
  • 眼肌麻痹
 271245
CYP27A1脑腱性黄瘤症 (CTX)
  • 肌腱增厚
  • 认知减退
  • 肌张力障碍
  • 白质疾病
  • 白内障
使用鹅去氧胆酸治疗606530
FXNFriedreich共济失调 (FRDA)
  • 反射减退
  • Babinski反应
  • 感觉丧失
  • 心肌病
 229300
PHYH
PEX7
Refsum病
  • 神经病变
  • 耳聋
  • 鱼鳞癣
  • 视网膜病变
使用食用植烷酸治疗266500
PNPLA6Boucher-Neuhäuser 综合征
  • 视觉丧失
  • 青春期延迟
  • 痉挛
 215470
SACSCharlevoix-Saguenay的常染色体隐性痉挛性共济失调 (ARSACS)
  • 痉挛
  • 周围神经病变
  • 视网膜出现条纹
 270550
SETXII型动眼失用共济失调 (AOA2)
  • 小脑萎缩
  • 轴索运动神经病
  • 动眼失用症
 606002
SIL1Marinesco-Sjögren 综合征
  • 智力残疾
  • 白内障
  • 肌张力降低
  • 肌肉病变
 248800
SLC52A2Brown-Vialetto-Van Laere综合征
  • 视神经萎缩
  • 听觉丧失
使用核黄素治疗614707
儿童时期发作的共济失调,伴眼盲和耳聋
  • 视觉丧失
  • 听觉丧失
  • 周围神经病变
Guissart et al [2016]
SNX14常染色体隐性脊髓小脑共济失调 20 (SCAR20)
  • 面部粗糙
  • 认知减退
  • 听觉丧失
  • 癫痫
  • 侧弯变形
 Thomas et al [2014], Akizu et al [2015]
/ 616354
SYNE1SYNE1相关常染色体隐性小脑共济失调
  • 法裔加拿大人
  • 上/下运动神经元疾病
 Synofzik et al [2016]
TTPA维生素E缺乏共济失调 (AVED)
  • 与FRDA相似
  • 头部摇晃 (28%)
使用维生素 E治疗277460
WFS1Wolfram 综合征
  • 幼年型糖尿病
  • 视神经萎缩
  • 听觉丧失
 222300
较为罕见 3
ABHD12
神经病、听力损失、共济失调、视网膜色素变性、白内障
 (PHARC)
  • 多发性神经病
  • 听觉丧失
  • 共济失调
  • 视网膜病变
  • 白内障
与Refsum相似Fiskerstrand et al [2010], Chen et al [2013]
/ 612674
ACO2小儿小脑视网膜退化 (ICRD)
  • 婴儿期发病
  • 肌张力降低
  • 癫痫
  • 智力残疾
  • 视网膜病变
寿命缩短Spiegel et al [2012]
/ 614559
COQ8A常染色体隐性脊髓小脑共济失调 9 (SCAR9)
  • 轻度精神运动性迟滞
  • 癫痫
  • 血浆乳酸升高
使用CoQ10治疗Lagier-Tourenne et al [2008], Mollet et al [2008]
/ 612016
ATCAYCayman 共济失调
  • Grand Cayman Island
  • 精神运动性迟滞
 Bomar et al [2003]
/ 601238
ATG5先天性共济失调
  • 发育迟缓
  • 非进行性
 Yapici & Eraksoy [2005], Kim et al [2016]
ATP8A2
小脑性共济失调、精神发育迟缓,平衡失调综合征4
 (CAMRQ4)
  • 土耳其人
  • 智力残疾
  • 四足运动
 Onat et al [2013]
/ 615268
STUB1 (CHIP)常染色体隐性脊髓小脑共济失调16 (SCAR16)
  • 青少年发作的共济失调伴小脑萎缩
  • 异常 EMG/NCV
  • 认知障碍
 Shi et al [2013], Depondt et al [2014], Synofzik et al [2014], Depondt et al [2014]
/ 615768
CLCN2白质脑病共济失调 (LKPAT)
  • 肌肉痉挛
  • 视网膜病变
 Depienne et al [2013]
/ 615651
CLN5成人发病的常染色体隐性遗传共济失调,伴神经元蜡样脂褐质储积症5 (CLN5)
  • 认知减退
  • 青光眼
 256731
CWF19L1常染色体隐性共济失调 (Turkish)
  • 土耳其人
  • 发育延迟
  • 认知障碍
 Burns et al [2014]
FLVCR1后索共济失调伴视网膜炎症变性 (AXPC1)
  • 脊髓后柱共济失调
  • 色素性视网膜炎
 Higgins et al [1999], Ishiura et al [2011]
/ 609033
GOSR2Ramsay Hunt 综合征
  • 肌阵挛性癫痫
 Corbett et al [2011]
/ 614018
GRID2常染色体隐性脊髓小脑共济失调 18 (SCAR18)
  • 语言&认知发育迟缓
  • 向上凝视强直
  • 视网膜病
GRID2的突变与w/AD 遗传有关 4Hills et al [2013], Van Schil et al [2015]
/ 616204
GRM1常染色体隐性脊髓小脑共济失调 13 (SCAR13)
  • 罗姆人
  • 发育迟缓
  • 智力缺损
  • 脑较小
 Guergueltcheva et al [2012]
/ 614831
KCNJ10SeSAME 综合征
  • 耳聋
  • 智力残疾
  • 电解质不平衡
 Scholl et al [2009]
/ 612780
KIAA0226常染色体隐性脊髓小脑共济失调 15 (SCAR15)
  • 癫痫
  • 认知减退
 Assoum et al [2013]
/ 615705
LAMA1小脑发育不良
  • 小脑囊肿
  • 视网膜病
 Aldinger et al [2014]
/ 150320
PMPCA常染色体隐性脊髓小脑共济失调 2 (SCAR2)
  • 认知障碍
  • 肌张力障碍 (偶尔地)
  • 肌肉痉挛 (偶尔地)
  • 较轻至严重的残疾
  • 身材矮小 (1 家庭)
  • 小脑颗粒细胞损失
Jobling et al [2015], Choquet et al [2016] / 213200
PNKPIV型动眼失用共济失调 (AOA4)
  • 肌张力障碍
  • 动眼失用症
  • 多发性神经病
  • 在葡萄牙较为多见
 Bras et al [2015]
/ 616267
POLG线粒体隐性共济失调综合征 (MIRAS)
  • 神经病变
  • 感觉性共济失调
  • 肌肉病变
  • 进展性眼外肌瘫痪
 157640
203700
258450
607459
POLR3A or POLR3B小脑萎缩伴低髓鞘化
(见 Pol III相关脑白质营养不良)
  • 牙缺失
  • 低促性腺激素性腺功能减退
 La Piana et al [2016]
PTF1A胰腺和小脑发育不全 (PACA)
  • 新生儿糖尿病
  • 小脑发育不全
  • 面部特征畸形
 Sellick et al [2004]
/ 609069
RNF216Gordon Holmes 综合征
  • 痴呆
  • 低促性腺激素性腺功能减退
  • 舞蹈症
 Margolin et al [2013], Santens et al [2015] / 212840
SLC9A1Lichtenstein-Knorr 综合征
  • 重度感音神经性耳聋
土耳其家庭Guissart et al [2015]
/ 107310
SLC25A46小脑发育不全
  • 先天性
  • 致死的
  • 呼吸暂停
 Wan et al [2016]
SPTBN2常染色体隐性脊髓小脑共济失调 14 (SCAR14)
  • 认知缺陷
SPTBN2的突变与SCA5相关Lise et al [2012], Elsayed et al [2014]
/ 615386
SYT14常染色体隐性脊髓小脑共济失调 11 (SCAR11)
  • 日本人
  • 精神运动性阻滞
 Doi et al [2011]
/ 614229
TDP1脊髓小脑共济失调伴轴索神经病 (SCAN1)
  • 轴索运动神经病
 607250
TPP1常染色体隐性脊髓小脑共济失调 7 (SCAR7)
  • 反射亢进
  • 发育迟缓
  • MRI示弥散性小脑萎缩
Late-infantile neuronal ceroid-lipofuscinosis 2 (CLN2)Breedveld et al [2004], Sun et al [2013], Dy et al [2015]
/ 609270
TSFM常染色体隐性遗传性心肌病伴共济失调
  • 肥厚性心肌病
  • 共济失调
  • 周围神经病变
  • 视神经萎缩
Leigh样综合征; 线粒体的延长因子TsAhola et al [2014], Emperador et al [2016]
TXN2早发性神经退化
  • 癫痫
  • 肌张力障碍
  • 视神经萎缩
  • 周围神经病变
 Holzerova et al [2016]
UBA5 (UFM1)儿童时期发作的进展性共济失调
  • 白内障
 Duan et al [2016]
VLDLRVLDLR相关的小脑发育不全 (CAMRQ1)
  • Hutterite
  • 智力残疾
  • 脑回简化
 224050
VWA3B小脑共济失调伴智力残疾
  • 肌肉痉挛
 Kawarai et al [2016] / 616948
WDR73Galloway-Mowat 综合征
(曾被称为常染色体隐性脊髓小脑共济失调 5 [SCAR5])
  • 视神经萎缩
  • 皮肤异常
  • 小头畸形
  • 癫痫
  • 肾病综合征
Jinks et al [2015]
/ 251300
WWOX常染色体隐性脊髓小脑共济失调 12 (SCAR12)
  • 癫痫
  • 智力残疾
  • 肌肉痉挛
 Mallaret et al [2014]
/ 614322
  1. 未知时给出了染色体
  2. 在超过5个家庭中出现
  3. “较为罕见” = 在1-5个家庭中出现 [Musselman et al 2014].
  4. 表 1.

 

Friedreich 共济失调 (FRDA)是最常见的常染色体隐性共济失调。 它通常始于儿童时期,表现为缓慢进行性共济失调,同时伴随腱反射的减弱和后柱感觉丧失。

  • 约25%的受影响个体具有“非典型”表现,常表现为发作较晚(年龄> 25岁)、保留肌腱反射或疾病进展异常缓慢。
  • 绝大多数个体在FXN中具有GAA三联体重复扩增;然而,FRDA与预判无相关性[Dürr et al 1996]。只有极少的个体在一个FXN等位基因中具有致病性变体,同时在另一个等位基因中具有GAA重复。

X-连锁的遗传性共济失调

除了脆性X震颤共济失调综合征(FXTAS),X-连锁的遗传性共济失调相当罕见 [Zanni & Bertini 2011].

表 4.

X-连锁 小脑共济失调: 分子遗传学 & 临床特征

基因 / 位点 1疾病可供区别的临床特征其它参考文献 2 /  OMIM 链接
ABCB7X-连锁的铁粒幼红细胞贫血和共济失调 (XLSA/A)
  • 幼儿发作
  • 贫血是无症状的
女性携带者可能有铁粒幼红细胞301310
ATP2B3X-连锁 共济失调
  • 儿童发作
  • 肌张力降低
 Zanni et al [2012], Feyma et al [2016]
CASKCASK-相关疾病
  • 认知减退
  • 小头畸形
  • 肌张力降低
  • 视神经发育不良
生长迟滞300749
FMR1FXTAS
  • 成人发作
最常见的 X-连锁共济失调发生在男性和女性准基因突变携带者中300623
OPHN1X-连锁精神发育迟滞伴小脑发育不全和独特的容貌
  • 婴儿发作
  • 肌张力降低
  • 发育迟缓
  • 癫痫
 Zanni et al [2005]
/ 300486
SLC9A6综合征性 X-连锁 精神发育迟滞, Christianson类型
  • 婴儿发作
  • 智力障碍
  • 癫痫
在女性中的MR检测;
可能类似于Angelman 综合征
Gilfillan et al [2008], Garbern et al [2010]
/ 300243
Xq25-q27.1X-连锁 脊髓小脑共济失调 5
  • 婴儿发作
  • 小脑发育不全
挪威人的祖先Zanni et al [2008]
/ 300703
   

FXTAS = 脆性X相关的震颤/共济失调综合征

  1. 未知时给出了染色体
  2. 没有GeneReview时给出了参考文献。

痉挛性共济失调

痉挛与小脑共济失调的组合相对常见,二者之一可能在表型中占主要地位[de Bot et al 2012](参见表 5)。 例如,共济失调和小脑萎缩通常发生在由编码蛋白paraplegin的SPG7中的致病性变体引起的痉挛性截瘫 7(遗传性痉挛性截瘫的一种形式)中[van Gassen et al 2012]。


五种病症被认定为痉挛性共济失调(SPAX)。 SPAX1以常染色体显性方式遗传,其他四个以常染色体隐性方式遗传。

表 5.

痉挛和小脑共济失调: 分子遗传学 & 临床特征

疾病 (MOI)基因可供区别的临床特征其它参考文献 /  OMIM 链接
SPAX1 (AD)VAMP1
  • 最初为进展性腿部肌肉痉挛
  • 步态共济失调
 Meijer et al [2002], Bourassa et al [2012]
/ 108600
SPAX2 (AR)KIF1C
  • 通常 w/儿童时期发作 震颤 & 辨距障碍
 Dor et al [2014]
/ 611302
SPAX3 (AR)MARS2
  • 脑室周围白质变化
 Bayat et al [2012]
/ 611390
SPAX4 (AR)MTPAP
  • 视神经萎缩
Amish 家庭Crosby et al [2010]
/ 613672
SPAX5 1 (AR)AFG3L2
  • 通常 w/周围神经病变 & 癫痫
 Pierson et al [2011]
/ 614487
SPG7 (AR)SPG7
  • 前庭障碍
  • 小脑萎缩
 Roxburgh et al [2013], Pfeffer et al [2015]
 

见痉挛性共济失调: OMIM 表型系列,在OMIM中查看与此相关的基因

 
  1. SCA28的等位基因(见表 1)

线粒体障碍导致的共济失调

进行性共济失调有时与线粒体DNA(mtDNA)(见线粒体疾病概述)的突变相关,包括MERRF(肌阵挛癫痫伴破碎红纤维),NARP(神经病、共济失调和色素性视网膜炎)[Finsterer 2009b],和 Kearns-Sayre 综合征。 mtDNA疾病通常与其他临床表现有关,如癫痫发作、耳聋、糖尿病、心肌病、视网膜病变和身材矮小[Da Pozzo et al 2009]。Pfeffer et al [2012]报道,MTATP6中的致病致病变异体可以引起儿童和成人发病的小脑共济失调,有时伴随异常眼构音障碍、虚弱、轴突神经病变和反射亢进。


注意,许多核基因调节线粒体功能可以在常染色体隐性共济失调中突变(参见线粒体疾病概述表 3, POLG)。

评估策略

一旦家族中的(即家庭中首先被发现的病例)被怀疑患有遗传性共济失调,以下方法可用于确定导致疾病的遗传因素,以辅助和预后判断。对给定个体的遗传性共济失调的遗传因素的判断,通常涉及病史、体格检查、神经学检查、神经成像、三代家族史和分子遗传学检查

临床表现

步态共济失调是这些疾病的常见临床表现。其他常见的症状包括:眼球震颤、构音障碍和辨距障碍。 脑成像常常显示小脑萎缩或发育不良。 发病年龄变化很大,但常染色体隐性遗传性共济失调常在儿童时期发病。患者也可能出现智力残疾、周围神经病变和视网膜异常等症状。

家族史

医者应获得患者的三代家族史,并应注意具有神经系统体征和症状的其他亲属。医者可以直接检查这些个体或审查他们的医疗记录,包括、神经影像学研究和尸体解剖检查的结果,来完成对亲属的相关发现的记录。

检测

除罕见情况外(如维生素E缺乏AVED),非基于DNA的临床测试通常是非特异性的。

分子遗传学检测

分子遗传测试的顺序和结果的解释是复杂的,可能需要有经验的实验室、临床遗传学家和遗传咨询师的支持。


要考虑的的方法是单基因的系列检测、多基因批量检测(多个基因的同时测试)和更全面的基因组检测(和完整线粒体测序 )。

多基因批量检测 。 与基因组检测相反,单基因的系列检测和多基因批量检测的选择依赖于临床医生希望对哪个特定基因或一组基因进行检测。

被测基因的选取常基于以下特点:

  • 遗传模式
  • 可鉴别的临床特点
  • 其它特征 (在列表的其它一栏中列出),包括:
    • 对一个核苷酸重复异常明显的预判
    • 族群性(起源的国家/地区);
    • 独特的发病年龄;
    • 缩短的寿命预期;
    • 可用的治疗方案;
    • 具体的病理结果。
注:(1)批量检测的基因和用于单个基因检测的诊断灵敏度随着实验室和时间的不同而变化。 (2)一些多基因批量可能包括与该GeneReview中讨论的病症不相关的基因;因此,临床医生需要确定哪个多基因批量检测最可能以最合理的成本鉴定病症的遗传原因。(3)在批量检测中使用的方法可以包括缺失/重复分析和/或其他基于非测序的测试。


Németh et al [2013]研究了使用遗传性共济失调作为模型的多基因批量检测,用于诊断神经系统疾病的临床效用。 使用下一代测序技术,他们在58个已知的人共济失调基因中搜索了在具有共济失调的50个个体中的小的基因内致病性变体(这些患其对SCA1,2,3,6,7和Friedreich共济失调的检测是正常的)。

  • 在八种不同基因中发现致病性变体:PRKCG PRKCG, TTBK2, SETX, SPTBN2, SACS, MRE11, KCNC3, 和 DARS2。
  • 总体检测率为18%,从成人发病进展性疾病的患者的8.3%,到儿童期或青少年发作进行性疾病的患者的40%。
  • 最高的检出率是有着青少年发病和阳性家族史的患者(75%)。

这项研究表明,这种多基因批量检测是有效的,成本效益较高,使分子诊断得以应用于许多难治性病例。

更全面的基因组检测 (有条件时) 包括(WES), (WGS), and 完整线粒体测序(WMitoSeq) 。如果单检测(和/或使用多基因批量)不能确诊遗传性共济失调特征的个体,则可以考虑这些检测。 这种测试可以提供一个先前未被考虑的诊断(如导致相似临床表现的不同基因的突变)。 对于基因组测试结果的解释中需要考虑的问题,请点击这里

遗传形式

超过一个受影响的家庭成员

单独案例

可供鉴别的临床特点

用以区分多种遗传性共济失调的临床特点有:

  • 由于所有形式的常染色体显性遗传性共济失调之间的广泛的临床重叠,在具有共济失调的任何给定个体中和在与常染色体显性遗传一致的家族史中难以在没有的情况下建立诊断。 注意,视网膜疾病提示SCA7,葡萄牙血统建议SCA3,癫痫发作和美洲印第安人血统建议SCA10,而舞蹈病建议SCA17或DRPLA。[Ashizawa et al 2013]。见表 1
  • 临床症状如智力残疾,癫痫发作,眼睛异常或周围神经病变可能有助于区分一些常染色体隐性遗传性共济失调。见表 3
  • 与正常功能不同的一段时间的共济失调(几分钟至几小时),强烈地提示阵发性共济失调。见表 2
  • 突出的痉挛状态表明患者患有其中一种痉挛性共济失调。见表 5

在没有区别临床特征的情况下,可以考虑多基因批量检测。批量检测可以围绕遗传性共济失调(如最常见的常染色体显性遗传性脑脊髓共济失调)的特定的相对小的子集定向,或者可以围绕范围广泛的疾病进行检测(如所有已知的遗传性共济失调)。

Other其它

族群性。单检测可以根据个人的种族背景加以考虑。

发病率。病症的流行可以用于进行一系列单测试(即,按照最常见至最不常见的遗传性共济失调的顺序进行测试),或多基因批量检测的顺序选择(即,选择仅包括五或六种最常见的遗传性共济失调)。

最常见的成人发病的常染色体显性共济失调是SCA1,SCA2,SCA3,SCA6和SCA7;最常见的常染色体隐性共济失调(通常是儿童时期发作)是Friedreich共济失调,AOA1,AOA2和共济失调毛细血管扩张症。

遗传咨询

遗传咨询是向个人和家庭提供关于遗传疾病的性质、遗传特征和影响的信息,以帮助他们做出明智的医疗和个人决定的过程。 以下部分涉及遗传风险评估、家族史和遗传测试的使用,以阐明家庭成员的遗传状况。本节不是为了解决患者个人可能面临的所有个人、文化或伦理问题,也不能替代遗传学专业人士的咨询。—ED.

遗传方式

该GeneReview包括遗传性共济失调,其可以以常染色体显性方式遗传,常染色体隐性方式或X-连锁隐性方式遗传。(由线粒体DNA的突变引起的遗传性共济失调在线粒体疾病概述中讨论)

如果具有与共济失调相关的综合征(如Friedreich 共济失调FXTAS),则患者可对该病症进行咨询。

家庭成员风险——常染色体显性遗传

的父母

  • 大多数诊断为常染色体显性遗传性共济失调的个体具有受影响的父母,尽管有时候家族史为阴性。
  • 家族史可能是阴性的,原因如下:患者父母的早期死亡,未能识别家族成员中的常染色体显性共济失调,父母晚期发作,无症状亲本中致病性降低,或原发突变。

的近亲

  • 近亲的风险取决于父母的遗传状况。
  • 如果一个的父母具有突变,则近亲遗传了该突变等位基因的风险为50%。

的后代。具有常染色体显性遗传共济失调的个体具有50%的概率将突变的传递给每个后代。

其他家庭成员。 其他家庭成员的风险取决于父母的情况。 如果父母受到影响,他或她的家庭成员可能面临风险。

家庭成员风险——常染色体隐性遗传

的父母

  • 父母是专性杂合子,因此携带致病性变体的单拷贝。
  • 杂合子是无症状的。

的近亲

  • 理论上,的每个近亲有25%的机会受到影响,50%的机会成为无症状,25%的机会不受影响且不是载体。

的后代。 所有后代都是携带突变的杂合子。

其他家庭成员。 每一个父母的近亲有50%的概率是

携带者检测

对于高危亲属的携带者检测需要事先鉴定家族中的致病性变体

家庭成员风险——X-连锁遗传

的父母

的近亲

  • 近亲的风险取决于母亲的状况。
  • 如果的母亲具有致病性变体,则在每次妊娠中传播它的机会是50%。继承致病变种的男性近亲将受到影响;继承致病变种的女性近亲将是携带者,通常不会受到影响。
  • 如果单独的病例(即家族中的单个事件),并且如果在母亲的白细胞DNA中不能检测到致病性变体,因为母体是生殖系嵌合体的可能性,近亲的风险低但大于一般群体的风险。

的后代。受影响男性的所有女儿都是携带者;他的儿子都不会受到影响。

其他家庭成员。的母方的姑母可能有成为携带者的风险,而她的后代(取决于他们的性别)可能有成为携带者或受影响的风险。

携带者检测

对具有X-连锁疾病风险的女性的携带者检测需要事先鉴定家族中的致病性变体

遗传咨询的相关问题

高危症状成年亲属的检测是可能的,特别是在已经确定了家庭中的特定疾病和致病性变种。 这种检测应在正式中进行。

总体来讲,结果在预测无症状个体的发病年龄、严重程度、症状类型或进展速率方面没有作用。

对年龄小于18岁的无症状个体的分子遗传学检测被认为是不合适的(当该无症状个体处于成人发病的风险中,且该疾病没有治疗方式时)。主要原因是其否定了儿童的自主性,却没有强制的益处。 此外,这种信息可能对家庭动态、未来歧视和污名化产生风险,此类信息引起的焦虑可能产生的不健康的影响。

另见National Society of Genetic Counselors关于未成年人对成人发病情况的遗传检测的立场声明,以及American Academy of Pediatrics and American College of Medical Genetics and Genomics 的政策声明:儿童遗传测试和筛查中的伦理和政策问题。

DNA银行用以储存DNA(通常从白细胞中提取),以备将来使用。 因为测试方法和我们对基因、等位基因变体和疾病的理解可能会在将来得到完善,所以应考虑对受影响个体的DNA进行存储。

产前测试和胚胎植入前遗传诊断

一旦在受影响的家庭成员中鉴定出了致病性变体,就可以对有更高风险的孕者进行遗传性共济失调和。 然而一般来说,发病年龄、疾病严重程度、特定症状和疾病进展的速度是可变的,并且不能通过家族史或来准确预测。 参见病因,ADCA,核苷酸重复序列障碍。

成人发病疾病的的请求比较罕见。在医疗专业人员和家庭内部可能存在产前测试的差异,特别是考虑终止妊娠而进行的测试。 虽然大多数中心会将产前检查的决定认为是父母的选择,但是对这些问题的讨论是适当的。

资源

GeneReviews员工选择以下疾病特定和/或伞状组织和/或登记处,为患有此疾病的个人及其家人提供帮助。 GeneReviews不对其他组织提供的信息负责。 有关选择标准的信息,请单击此处

 

患者管理

对症状的治疗

共济失调的患者管理通常旨在通过既定的康复医学和职业和物理治疗方法为协调问题提供帮助。

拐杖,步行者和轮椅对于步态共济失调是有用的。

特殊装置可用于帮助手写,按扣和使用餐具。

语言治疗可能有利于有发音障碍的人。 计算机设备可用于帮助有严重言语障碍的人。

对主要症状的预防

除了AVED、Refsum综合征、CTX和CoQ10 缺乏外,没有针对遗传性共济失调的特异性治疗。

参考文献

发表的准则/共识声明

  1. Committee on Bioethics, Committee on Genetics, and American College of Medical Genetics and Genomics Social, Ethical, Legal Issues Committee. Ethical and policy issues in genetic testing and screening of children. Available online. 2013. Accessed 2-2-17. [PubMed]
  2. National Society of Genetic Counselors. Position statement on genetic testing of minors for adult-onset disorders. Available online. 2012. Accessed 2-2-17.

引用文献

  • Abele M, Burk K, Schols L, Schwartz S, Besenthal I, Dichgans J, Zuhlke C, Riess O, Klockgether T. The aetiology of sporadic adult-onset ataxia. Brain. 2002;125:961–8. [PubMed]
  • Ahmed MY, Chioza BA, Rajab A, Schmitz-Abe K, Al-Khayat A, Al-Turki S, Baple EL, Patton MA, Al-Memar AY, Hurles ME, Partlow JN, Hill RS, Evrony GD, Servattalab S, Markianos K, Walsh CA, Crosby AH, Mochida GH. Loss of PCLO function underlies pontocerebellar hypoplasia type III. Neurology. 2015;84:1745–50. [PMC free article ] [PubMed]
  • Ahola S, Isohanni P, Euro L, Brilhante V, Palotie A, Pihko H, Lönnqvist T, Lehtonen T, Laine J, Tyynismaa H, Suomalainen A. Mitochondrial EFTs defects in juvenile-onset Leigh disease, ataxia, neuropathy, and optic atrophy. Neurology. 2014;83:743–51. [PMC free article ] [PubMed]
  • Akizu N, Cantagrel V, Zaki MS, Al-Gazali L, Wang X, Rosti RO, Dikoglu E, Gelot AB, Rosti B, Vaux KK, Scott EM, Silhavy JL, Schroth J, Copeland B, Schaffer AE, Gordts PL, Esko JD, Buschman MD, Field SJ, Napolitano G, Abdel-Salam GM, Ozgul RK, Sagıroglu MS, Azam M, Ismail S, Aglan M, Selim L, Mahmoud IG, Abdel-Hadi S, Badawy AE, Sadek AA, Mojahedi F, Kayserili H, Masri A, Bastaki L, Temtamy S, Müller U, Desguerre I, Casanova JL, Dursun A, Gunel M, Gabriel SB, de Lonlay P, Gleeson JG. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet. 2015;47:528–34. [PMC free article ] [PubMed]
  • Aldinger KA, Mosca SJ, Tétreault M, Dempsey JC, Ishak GE, Hartley T, Phelps IG, Lamont RE, O'Day DR, Basel D, Gripp KW, Baker L, Stephan MJ, Bernier FP, Boycott KM, Majewski J., University of Washington Center for Mendelian Genomics. Care4Rare Canada, Parboosingh JS, Innes AM, Doherty D. Mutations in LAMA1 cause cerebellar dysplasia and cysts with and without retinal dystrophy. Am J Hum Genet. 2014;95:227–34. [PMC free article ] [PubMed]
  • Ashizawa T, Figueroa KP, Perlman SL, Gomez CM, Wilmot GR, Schmahmann JD, Ying SH, Zesiewicz TA, Paulson HL, Shakkottai VG, Bushara KO, Kuo SH, Geschwind MD, Xia G, Mazzoni P, Krischer JP, Cuthbertson D, Holbert AR, Ferguson JH, Pulst SM, Subramony S. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J Rare Dis. 2013;2013;8:177. [PMC free article ] [PubMed]
  • Assoum M, Salih MA, Drouot N, Hnia K, Martelli A, Koenig M. The Salih ataxia mutation impairs Rubicon endosomal localization. Cerebellum. 2013;12:835–40. [PubMed]
  • Bakalkin G, Watanabe H, Jezierska J, Depoorter C, Verschuuren-Bemelmans C, Bazov I, Artemenko KA, Yakovleva T, Dooijes D, Van de Warrenburg BP, Zubarev RA, Kremer B, Knapp PE, Hauser KF, Wijmenga C, Nyberg F, Sinke RJ, Verbeek DS. Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. Am J Hum Genet. 2010;87:593–603. [PMC free article ] [PubMed]
  • Bayat V, Thiffault I, Jaiswal M, Tétreault M, Donti T, Sasarman F, Bernard G, Demers-Lamarche J, Dicaire MJ, Mathieu J, Vanasse M, Bouchard JP, Rioux MF, Lourenco CM, Li Z, Haueter C, Shoubridge EA, Graham BH, Brais B, Bellen HJ. Mutations in the mitochondrial methionyl-tRNA synthetase cause a neurodegenerative phenotype in flies and a recessive ataxia (ARSAL) in humans. PLoS Biol. 2012;10:e1001288. [PMC free article ] [PubMed]
  • Bomar JM, Benke PJ, Slattery EL, Puttagunta R, Taylor LP, Seong E, Nystuen A, Chen W, Albin RL, Patel PD, Kittles RA, Sheffield VC, Burmeister M. Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse. Nat Genet. 2003;35:264–9. [PubMed]
  • Bourassa CV, Meijer IA, Merner ND, Grewal KK, Stefanelli MG, Hodgkinson K, Ives EJ, Pryse-Phillips W, Jog M, Boycott K, Grimes DA, Goobie S, Leckey R, Dion PA, Rouleau GA. VAMP1 mutation causes dominant hereditary spastic ataxia in Newfoundland families. Am J Hum Genet. 2012;91:548–52. [PMC free article ] [PubMed]
  • Bras J, Alonso I, Barbot C, Costa MM, Darwent L, Orme T, Sequeiros J, Hardy J, Coutinho P, Guerreiro R. Mutations in PNKP cause recessive ataxia with oculomotor apraxia type 4. Am J Hum Genet. 2015;96:474–9. [PMC free article ] [PubMed]
  • Breedveld GJ, van Wetten B, te Raa GD, Brusse E, van Swieten JC, Oostra BA, Maat-Kievit JA. A new locus for a childhood onset, slowly progressive autosomal recessive spinocerebellar ataxia maps to chromosome 11p15. J Med Genet. 2004;41:858–66. [PMC free article ] [PubMed]
  • Brkanac Z, Fernandez M, Matsushita M, Lipe H, Wolff J, Bird TD, Raskind WH. Autosomal dominant sensory/motor neuropathy with Ataxia (SMNA): Linkage to chromosome 7q22-q32. Am J Med Genet. 2002;114:450–7. [PubMed]
  • Brkanac Z, Spencer D, Shendure J, Robertson PD, Matsushita M, Vu T, Bird TD, Olson MV, Raskind WH. IFRD1 is a candidate gene for SMNA on chromosome 7q22-q23. Am J Hum Genet. 2009;84:692–7. [PMC free article ] [PubMed]
  • Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, Fetoni V, Mariotti C, Migone N, Di Donato S, Taroni F. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol. 2004;61:727–33. [PubMed]
  • Brusse E, de Koning I, Maat-Kievit A, Oostra BA, Heutink P, van Swieten JC. Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord. 2006;21:396–401. [PubMed]
  • Bürk K, Zuhlke C, Konig IR, Ziegler A, Schwinger E, Globas C, Dichgans J, Hellenbroich Y. Spinocerebellar ataxia type 5: clinical and molecular genetic features of a German kindred. Neurology. 2004;62:327–9. [PubMed]
  • Burns R, Majczenko K, Xu J, Peng W, Yapici Z, Dowling JJ, Li JZ, Burmeister M. Homozygous splice mutation in CWF19L1 in a Turkish family with recessive ataxia syndrome. Neurology. 2014;83:2175–82. [PMC free article ] [PubMed]
  • Cader MZ, Steckley JL, Dyment DA, McLachlan RS, Ebers GC. A genome-wide screen and linkage mapping for a large pedigree with episodic ataxia. Neurology. 2005;65:156–8. [PubMed]
  • Cadieux-Dion M, Turcotte-Gauthier M, Noreau A, Martin C, Meloche C, Gravel M, Drouin CA, Rouleau GA, Nguyen DK, Cossette P. Expanding the clinical phenotype associated with ELOVL4 mutation: study of a large French-Canadian family with autosomal dominant spinocerebellar ataxia and erythrokeratodermia. JAMA Neurol. 2014;71:470–5. [PubMed]
  • Chen DH, Naydenov A, Blankman JL, Mefford HC, Davis M, Sul Y, Barloon AS, Bonkowski E, Wolff J, Matsushita M, Smith C, Cravatt BF, Mackie K, Raskind WH, Stella N, Bird TD. Two novel mutations in ABHD12: expansion of the mutation spectrum in PHARC and assessment of their functional effects. Hum Mutat. 2013;34:1672–8. [PMC free article ] [PubMed]
  • Choquet K, Zurita-Rendón O, La Piana R, Yang S, Dicaire MJ. Care4Rare Consortium, Boycott KM, Majewski J, Shoubridge EA, Brais B, Tétreault M. Autosomal recessive cerebellar ataxia caused by a homozygous mutation in PMPCA. Brain. 2016;139:e19. [PubMed]
  • Chung MY, Lu YC, Cheng NC, Soong BW. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain. 2003;126:1293–9. [PubMed]
  • Chung MY, Soong BW. Reply to: SCA-19 and SCA-22: evidence for one locus with a worldwide distribution. Brain. 2004;127:E7. [PubMed]
  • Corbett MA, Schwake M, Bahlo M, Dibbens LM, Lin M, Gandolfo LC, Vears DF, O'Sullivan JD, Robertson T, Bayly MA, Gardner AE, Vlaar AM, Korenke GC, Bloem BR, de Coo IF, Verhagen JM, Lehesjoki AE, Gecz J, Berkovic SF. A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. Am J Hum Genet. 2011;88:657–63. [PMC free article ] [PubMed]
  • Corcia P, Vourc'h P, Guennoc AM, Del Mar Amador M, Blasco H, Andres C, Couratier P, Gordon PH, Meininger V. Pure cerebellar ataxia linked to large C9orf72 repeat expansion. Amyotroph Lateral Scler Frontotemporal Degener. 2016;17:301–3. [PubMed]
  • Coutelier M, Blesneac I, Monteil A, Monin ML, Ando K, Mundwiller E, Brusco A, Le Ber I, Anheim M, Castrioto A, Duyckaerts C, Brice A, Durr A, Lory P, Stevanin G. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia. Am J Hum Genet. 2015a;97:726–37. [PMC free article ] [PubMed]
  • Coutelier M, Burglen L, Mundwiller E, Abada-Bendib M, Rodriguez D, Chantot-Bastaraud S, Rougeot C, Cournelle MA, Milh M, Toutain A, Bacq D, Meyer V, Afenjar A, Deleuze JF, Brice A, Héron D, Stevanin G, Durr A. GRID2 mutations span from congenital to mild adult-onset cerebellar ataxia. Neurology. 2015b;84:1751–9. [PubMed]
  • Crosby AH, Patel H, Chioza BA, Proukakis C, Gurtz K, Patton MA, Sharifi R, Harlalka G, Simpson MA, Dick K, Reed JA, Al-Memar A, Chrzanowska-Lightowlers ZM, Cross HE, Lightowlers RN. Defective mitochondrial mRNA maturation is associated with spastic ataxia. Am J Hum Genet. 2010;87:655–60. [PMC free article ] [PubMed]
  • Da Pozzo P, Cardaioli E, Malfatti E, Gallus GN, Malandrini A, Gaudiano C, Berti G, Invernizzi F, Zeviani M, Federico A. A novel mutation in the mitochondrial tRNA(Pro) gene associated with late-onset ataxia, retinitis pigmentosa, deafness, leukoencephalopathy and complex I deficiency. Eur J Hum Genet. 2009;17:1092–6. [PMC free article ] [PubMed]
  • de Bot ST, Willemsen MA, Vermeer S, Kremer HP, van de Warrenburg BP. Reviewing the genetic causes of spastic-ataxias. Neurology. 2012;79:1507–14. [PubMed]
  • de Vries B, Mamsa H, Stam AH, Wan J, Bakker SL, Vanmolkot KR, Haan J, Terwindt GM, Boon EM, Howard BD, Frants RR, Baloh RW, Ferrari MD, Jen JC, van den Maagdenberg AM. Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake. Arch Neurol. 2009;66:97–101. [PubMed]
  • Delplanque J, Devos D, Huin V, Genet A, Sand O, Moreau C, Goizet C, Charles P, Anheim M, Monin ML, Buée L, Destée A, Grolez G, Delmaire C, Dujardin K, Dellacherie D, Brice A, Stevanin G, Strubi-Vuillaume I, Dürr A, Sablonnière B. TMEM240 mutations cause spinocerebellar ataxia 21 with mental retardation and severe cognitive impairment. Brain. 2014;137:2657–63. [PubMed]
  • Depienne C, Bugiani M, Dupuits C, Galanaud D, Touitou V, Postma N, van Berkel C, Polder E, Tollard E, Darios F, Brice A, de Die-Smulders CE, Vles JS, Vanderver A, Uziel G, Yalcinkaya C, Frints SG, Kalscheuer VM, Klooster J, Kamermans M, Abbink TE, Wolf NI, Sedel F, van der Knaap MS. Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study. Lancet Neurol. 2013;12:659–68. [PubMed]
  • Depondt C, Donatello S, Simonis N, Rai M, van Heurck R, Abramowicz M, D'Hooghe M, Pandolfo M. Autosomal recessive cerebellar ataxia of adult onset due to STUB1 mutations. Neurology. 2014;2014;82:1749–50. [PubMed]
  • Devos D, Schraen-Maschke S, Vuillaume I, Dujardin K, Naze P, Willoteaux C, Destee A, Sablonniere B. Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology. 2001;56:234–8. [PubMed]
  • Di Gregorio E, Borroni B, Giorgio E, Lacerenza D, Ferrero M, Lo Buono N, Ragusa N, Mancini C, Gaussen M, Calcia A, Mitro N, Hoxha E, Mura I, Coviello DA, Moon YA, Tesson C, Vaula G, Couarch P, Orsi L, Duregon E, Papotti MG, Deleuze JF, Imbert J, Costanzi C, Padovani A, Giunti P, Maillet-Vioud M, Durr A, Brice A, Tempia F, Funaro A, Boccone L, Caruso D, Stevanin G, Brusco A. ELOVL5 mutations cause spinocerebellar ataxia 38. Am J Hum Genet. 2014;95:209–17. [PMC free article ] [PubMed]
  • Doi H, Yoshida K, Yasuda T, Fukuda M, Fukuda Y, Morita H, Ikeda S, Kato R, Tsurusaki Y, Miyake N, Saitsu H, Sakai H, Miyatake S, Shiina M, Nukina N, Koyano S, Tsuji S, Kuroiwa Y, Matsumoto N. Exome sequencing reveals a homozygous SYT14 mutation in adult-onset, autosomal-recessive spinocerebellar ataxia with psychomotor retardation. Am J Hum Genet. 2011;89:320–7. [PMC free article ] [PubMed]
  • Dor T, Cinnamon Y, Raymond L, Shaag A, Bouslam N, Bouhouche A, Gaussen M, Meyer V, Durr A, Brice A, Benomar A, Stevanin G, Schuelke M, Edvardson S. KIF1C mutations in two families with hereditary spastic paraparesis and cerebellar dysfunction. J Med Genet. 2014;51:137–42. [PubMed]
  • Dryer SE, Lhuillier L, Cameron JS, Martin-Caraballo M. Expression of K(Ca) channels in identified populations of developing vertebrate neurons: role of neurotrophic factors and activity. J Physiol Paris. 2003;97:49–58. [PubMed]
  • Duan R, Shi Y, Yu L, Zhang G, Li J, Lin Y, Guo J, Wang J, Shen L, Jiang H, Wang G, Tang B. UBA5 mutations cause a new form of autosomal recessive cerebellar ataxia. PLoS One. 2016;11:e0149039. [PMC free article ] [PubMed]
  • Duarri A, Jezierska J, Fokkens M, Meijer M, Schelhaas HJ, den Dunnen WF, van Dijk F, Verschuuren-Bemelmans C, Hageman G, van de Vlies P, Küsters B, van de Warrenburg BP, Kremer B, Wijmenga C, Sinke RJ, Swertz MA, Kampinga HH, Boddeke E, Verbeek DS. Mutations in potassium channel kcnd3 cause spinocerebellar ataxia type 19. Ann Neurol. 2012;72:870–80. [PubMed]
  • Dudding TE, Friend K, Schofield PW, Lee S, Wilkinson IA, Richards RI. Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology. 2004;63:2288–92. [PubMed]
  • Dürr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9:885–94. [PubMed]
  • Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, Koenig M. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N Engl J Med. 1996;335:1169–75. [PubMed]
  • Dy ME, Sims KB, Friedman J. TPP1 deficiency: Rare cause of isolated childhood-onset progressive ataxia. Neurology. 2015;85:1259–61. [PubMed]
  • Edener U, Bernard V, Hellenbroich Y, Gillessen-Kaesbach G, Zühlke C. Two dominantly inherited ataxias linked to chromosome 16q22.1: SCA4 and SCA31 are not allelic. J Neurol. 2011;258:1223–7. [PubMed]
  • Elsayed SM, Heller R, Thoenes M, Zaki MS, Swan D, Elsobky E, Zühlke C, Ebermann I, Nürnberg G, Nürnberg P, Bolz HJ. Autosomal dominant SCA5 and autosomal recessive infantile SCA are allelic conditions resulting from SPTBN2 mutations. Eur J Hum Genet. 2014;22:286–8. [PMC free article ] [PubMed]
  • Embiruçu EK, Martyn ML, Schlesinger D, Kok F. Autosomal recessive ataxias: 20 types, and counting. Arq Neuropsiquiatr. 2009;67:1143–56. [PubMed]
  • Emperador S, Bayona-Bafaluy MP, Fernández-Marmiesse A, Pineda M, Felgueroso B, López-Gallardo E, Artuch R, Roca I, Ruiz-Pesini E, Couce ML, Montoya J. Molecular-genetic characterization and rescue of a TSFM mutation causing childhood-onset ataxia and nonobstructive cardiomyopathy. Eur J Hum Genet. 2016;25:153–6. [PMC free article ] [PubMed]
  • Escayg A, De Waard M, Lee DD, Bichet D, Wolf P, Mayer T, Johnston J, Baloh R, Sander T, Meisler MH. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet. 2000;66:1531–9. [PMC free article ] [PubMed]
  • Feyma T, Ramsey K, Huentelman MJ, Craig DW, Padilla-Lopez S, Narayanan V, Kruer MC. Dystonia in ATP2B3-associated X-linked spinocerebellar ataxia. Mov Disord. 2016;31:1752–3. [PMC free article ] [PubMed]
  • Finsterer J. Ataxias with autosomal, X-chromosomal or maternal inheritance. Can J Neurol Sci. 2009a;36:409–28. [PubMed]
  • Finsterer J. Mitochondrial ataxias. Can J Neurol Sci. 2009b;36:543–53. [PubMed]
  • Fiskerstrand T, Hmida-Ben Brahim D, Johansson S, M'zahem A, Haukanes BI, Drouot N, Zimmermann J, Cole AJ, Vedeler C, Bredrup C, Assoum M, Tazir M, Klockgether T, Hamri A, Steen VM, Boman H, Bindoff LA, Koenig M, Knappskog PM. Mutations in ABHD12 cause the neurodegenerative disease PHARC: An inborn error of endocannabinoid metabolism. Am J Hum Genet. 2010;87:410–7. [PMC free article ] [PubMed]
  • Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert MF, Kaplan C, Ptacek LJ. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet. 1996;59:392–9. [PMC free article ] [PubMed]
  • Garbern JY, Neumann M, Trojanowski JQ, Lee VM, Feldman G, Norris JW, Friez MJ, Schwartz CE, Stevenson R, Sima AA. A mutation affecting the sodium/proton exchanger, SLC9A6, causes mental retardation with tau deposition. Brain. 2010;133:1391–402. [PMC free article ] [PubMed]
  • Gilfillan GD, Selmer KK, Roxrud I, Smith R, Kyllerman M, Eiklid K, Kroken M, Mattingsdal M, Egeland T, Stenmark H, Sjøholm H, Server A, Samuelsson L, Christianson A, Tarpey P, Whibley A, Stratton MR, Futreal PA, Teague J, Edkins S, Gecz J, Turner G, Raymond FL, Schwartz C, Stevenson RE, Undlien DE, Strømme P. SLC9A6 mutations cause X-linked mental retardation, microcephaly, epilepsy, and ataxia, a phenotype mimicking Angelman syndrome. Am J Hum Genet. 2008;82:1003–10. [PMC free article ] [PubMed]
  • Guergueltcheva V, Azmanov DN, Angelicheva D, Smith KR, Chamova T, Florez L, Bynevelt M, Nguyen T, Cherninkova S, Bojinova V, Kaprelyan A, Angelova L, Morar B, Chandler D, Kaneva R, Bahlo M, Tournev I, Kalaydjieva L. Autosomal-recessive congenital cerebellar ataxia is caused by mutations in metabotropic glutamate receptor 1. Am J Hum Genet. 2012;91:553–64. [PMC free article ] [PubMed]
  • Guissart C, Drouot N, Oncel I, Leheup B, Gershoni-Barush R, Muller J, Ferdinandusse S, Larrieu L, Anheim M, Arslan EA, Claustres M, Tranchant C, Topaloglu H, Koenig M. Genes for spinocerebellar ataxia with blindness and deafness (SCABD/SCAR3, MIM# 271250 and SCABD2). Eur J Hum Genet. 2016;24:1154–9. [PMC free article ] [PubMed]
  • Guissart C, Li X, Leheup B, Drouot N, Montaut-Verient B, Raffo E, Jonveaux P, Roux AF, Claustres M, Fliegel L, Koenig M. Mutation of SLC9A1, encoding the major Na+/H+ exchanger, causes ataxia-deafness Lichtenstein-Knorr syndrome. Hum Mol Genet. 2015;24:463–70. [PubMed]
  • Hamilton EM, Polder E, Vanderver A, Naidu S, Schiffmann R, Fisher K, Raguž AB, Blumkin L. H-ABC Research Group, van Berkel CG, Waisfisz Q, Simons C, Taft RJ, Abbink TE, Wolf NI, van der Knaap MS. Hypomyelination with atrophy of the basal ganglia and cerebellum: further delineation of the phenotype and genotype-phenotype correlation. Brain. 2014;137:1921–30. [PMC free article ] [PubMed]
  • Hekman KE, Yu GY, Brown CD, Zhu H, Du X, Gervin K, Undlien DE, Peterson A, Stevanin G, Clark HB, Pulst SM, Bird TD, White KP, Gomez CM. A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult. Hum Mol Genet. 2012;21:5472–83. [PMC free article ] [PubMed]
  • Hellenbroich Y, Bubel S, Pawlack H, Opitz S, Vieregge P, Schwinger E, Zühlke C. Refinement of the spinocerebellar ataxia type 4 locus in a large German family and exclusion of CAG repeat expansions in this region. J Neurol. 2003;250:668–71. [PubMed]
  • Higgins JJ, Morton DH, Loveless JM. Posterior column ataxia with retinitis pigmentosa (AXPC1) maps to chromosome 1q31-q32. Neurology. 1999;52:146–50. [PubMed]
  • Hills LB, Masri A, Konno K, Kakegawa W, Lam AT, Lim-Melia E, Chandy N, Hill RS, Partlow JN, Al-Saffar M, Nasir R, Stoler JM, Barkovich AJ, Watanabe M, Yuzaki M, Mochida GH. Deletions in GRID2 lead to a recessive syndrome of cerebellar ataxia and tonic upgaze in humans. Neurology. 2013;81:1378–86. [PMC free article ] [PubMed]
  • Holzerova E, Danhauser K, Haack TB, Kremer LS, Melcher M, Ingold I, Kobayashi S, Terrile C, Wolf P, Schaper J, Mayatepek E, Baertling F, Friedmann Angeli JP, Conrad M, Strom TM, Meitinger T, Prokisch H, Distelmaier F. Human thioredoxin 2 deficiency impairs mitochondrial redox homeostasis and causes early-onset neurodegeneration. Brain. 2016;139:346–54. [PubMed]
  • Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, Stevanin G, Durr A, Zuhlke C, Burk K, Clark HB, Brice A, Rothstein JD, Schut LJ, Day JW, Ranum LP. Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet. 2006;38:184–90. [PubMed]
  • Ishiura H, Fukuda Y, Mitsui J, Nakahara Y, Ahsan B, Takahashi Y, Ichikawa Y, Goto J, Sakai T, Tsuji S. Posterior column ataxia with retinitis pigmentosa in a Japanese family with a novel mutation in FLVCR1. Neurogenetics. 2011;12:117–21. [PubMed]
  • Jayadev S, Bird TD. Hereditary ataxias: overview. Genet Med. 2013;15:673–83. [PubMed]
  • Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW., CINCH investigators. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain. 2007;130:2484–93. [PubMed]
  • Jiang H, Tang BS, Xu B, Zhao GH, Shen L, Tang JG, Li QH, Xia K. Frequency analysis of autosomal dominant spinocerebellar ataxias in mainland Chinese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Chin Med J (Engl) 2005;118:837–43. [PubMed]
  • Jiang H, Wang J, Du, J, Duan R, Li J, Tang B. Progress in treating hereditary ataxia in mainland China. In: Sanders S, Zhang Z, Tang V, eds. Pathways to Cures: Neurodegenerative Diseases in China. Washington, DC: Science/AAAS; 2013:32-4.
  • Jinks RN, Puffenberger EG, Baple E, Harding B, Crino P, Fogo AB, Wenger O, Xin B, Koehler AE, McGlincy MH, Provencher MM, Smith JD, Tran L, Al Turki S, Chioza BA, Cross H, Harlalka GV, Hurles ME, Maroofian R, Heaps AD, Morton MC, Stempak L, Hildebrandt F, Sadowski CE, Zaritsky J, Campellone K, Morton DH, Wang H, Crosby A, Strauss KA. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73. Brain. 2015;138:2173–90. [PMC free article ] [PubMed]
  • Jobling RK, Assoum M, Gakh O, Blaser S, Raiman JA, Mignot C, Roze E, Dürr A, Brice A, Lévy N, Prasad C, Paton T, Paterson AD, Roslin NM, Marshall CR, Desvignes JP, Roëckel-Trevisiol N, Scherer SW, Rouleau GA, Mégarbané A, Isaya G, Delague V, Yoon G. PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. Brain. 2015;138:1505–17. [PMC free article ] [PubMed]
  • Kawarai T, Tajima A, Kuroda Y, Saji N, Orlacchio A, Terasawa H, Shimizu H, Kita Y, Izumi Y, Mitsui T, Imoto I, Kaji R. A homozygous mutation of VWA3B causes cerebellar ataxia with intellectual disability. J Neurol Neurosurg Psychiatry. 2016;87:656–62. [PubMed]
  • Kerber KA, Jen JC, Lee H, Nelson SF, Baloh RW. A new episodic ataxia syndrome with linkage to chromosome 19q13. Arch Neurol. 2007;64:749–52. [PubMed]
  • Kim JY, Park SS, Joo SI, Kim JM, Jeon BS. Molecular analysis of Spinocerebellar ataxias in Koreans: frequencies and reference ranges of SCA1, SCA2, SCA3, SCA6, and SCA7. Mol Cells. 2001;12:336–41. [PubMed]
  • Kim M, Sandford E, Gatica D, Qiu Y, Liu X, Zheng Y, Schulman BA, Xu J, Semple I, Ro SH, Kim B, Mavioglu RN, Tolun A, Jipa A, Takats S, Karpati M, Li JZ, Yapici Z, Juhasz G, Lee JH, Klionsky DJ, Burmeister M. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. Elife. 2016;5:e12245. pii. doi. [PMC free article ] [PubMed] [Cross Ref]
  • Klein CJ, Bird TD, Taner N, Lincoln S, Hjorth R, Wu Y, Kwok J, Mer G, Dyck PJ, Nicholson GA. DNMT1 amino acid 495 mutation and HSAN1E phenotype spectrum. Neurology. 2013;80:824–8. [PMC free article ] [PubMed]
  • Klein CJ, Botuyan MV, Wu Y, Ward CJ, Nicholson GA, Hammans S, Hojo K, Yamanishi H, Karpf AR, Wallace DC, Simon M, Lander C, Boardman LA, Cunningham JM, Smith GE, Litchy WJ, Boes B, Atkinson EJ, Middha S. B Dyck PJ, Parisi JE, Mer G, Smith DI, Dyck PJ. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet. 2011;43:595–600. [PMC free article ] [PubMed]
  • La Piana R, Cayami FK, Tran LT, Guerrero K, van Spaendonk R, Õunap K, Pajusalu S, Haack T, Wassmer E, Timmann D, Mierzewska H, Poll-Thé BT, Patel C, Cox H, Atik T, Onay H, Ozkınay F, Vanderver A, van der Knaap MS, Wolf NI, Bernard G. Diffuse hypomyelination is not obligate for POLR3-related disorders. Neurology. 2016;86:1622–6. [PMC free article ] [PubMed]
  • La Spada AR. Trinucleotide repeat instability: genetic features and molecular mechanisms. Brain Pathol. 1997;7:943–63. [PubMed]
  • Lagier-Tourenne C, Tazir M, López LC, Quinzii CM, Assoum M, Drouot N, Busso C, Makri S, Ali-Pacha L, Benhassine T, Anheim M, Lynch DR, Thibault C, Plewniak F, Bianchetti L, Tranchant C, Poch O, DiMauro S, Mandel JL, Barros MH, Hirano M, Koenig M. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet. 2008;82:661–72. [PMC free article ] [PubMed]
  • Leach EL, van Karnebeek CD, Townsend KN, Tarailo-Graovac M, Hukin J, Gibson WT. Episodic ataxia associated with a de novo SCN2A mutation. Eur J Paediatr Neurol. 2016;20:772–6. [PubMed]
  • Lee YC, Durr A, Majczenko K, Huang YH, Liu YC, Lien CC, Tsai PC, Ichikawa Y, Goto J, Monin ML, Li JZ, Chung MY, Mundwiller E, Shakkottai V, Liu TT, Tesson C, Lu YC, Brice A, Tsuji S, Burmeister M, Stevanin G, Soong BW. Mutations in KCND3 cause spinocerebellar ataxia type 22. Ann Neurol. 2012;72:859–69. [PMC free article ] [PubMed]
  • Leggo J, Dalton A, Morrison PJ, Dodge A, Connarty M, Kotze MJ, Rubinsztein DC. Analysis of spinocerebellar ataxia types 1, 2, 3, and 6, dentatorubral- pallidoluysian atrophy, and Friedreich's ataxia genes in spinocerebellar ataxia patients in the UK. J Med Genet. 1997;34:982–5. [PMC free article ] [PubMed]
  • Lise S, Clarkson Y, Perkins E, Kwasniewska A, Sadighi Akha E, Schnekenberg RP, Suminaite D, Hope J, Baker I, Gregory L, Green A, Allan C, Lamble S, Jayawant S, Quaghebeur G, Cader MZ, Hughes S, Armstrong RJ, Kanapin A, Rimmer A, Lunter G, Mathieson I, Cazier JB, Buck D, Taylor JC, Bentley D, McVean G, Donnelly P, Knight SJ, Jackson M, Ragoussis J, Németh AH. Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development. PLoS Genet. 2012;8:e1003074. [PMC free article ] [PubMed]
  • Mallaret M, Synofzik M, Lee J, Sagum CA, Mahajnah M, Sharkia R, Drouot N, Renaud M, Klein FA, Anheim M, Tranchant C, Mignot C, Mandel JL, Bedford M, Bauer P, Salih MA, Schüle R, Schöls L, Aldaz CM, Koenig M. The tumour suppressor gene WWOX is mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation. Brain. 2014;137:411–9. [PMC free article ] [PubMed]
  • Margolin DH, Kousi M, Chan YM, Lim ET, Schmahmann JD, Hadjivassiliou M, Hall JE, Adam I, Dwyer A, Plummer L, Aldrin SV, O'Rourke J, Kirby A, Lage K, Milunsky A, Milunsky JM, Chan J, Hedley-Whyte ET, Daly MJ, Katsanis N, Seminara SB. Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination. N Engl J Med. 2013;368:1992–2003. [PMC free article ] [PubMed]
  • Maruyama H, Izumi Y, Morino H, Oda M, Toji H, Nakamura S, Kawakami H. Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: a study of 1,286 Japanese patients. Am J Med Genet. 2002;114:578–83. [PubMed]
  • Matsumura R, Futamura N, Ando N, Ueno S. Frequency of spinocerebellar ataxia mutations in the Kinki district of Japan. Acta Neurol Scand. 2003;107:38–41. [PubMed]
  • Meijer IA, Hand CK, Grewal KK, Stefanelli MG, Ives EJ, Rouleau GA. A locus for autosomal dominant hereditary spastic ataxia, SAX1, maps to chromosome 12p13. Am J Hum Genet. 2002;70:763–9. [PMC free article ] [PubMed]
  • Merrill MJ, Nai D, Ghosh P, Edwards NA, Hallett M, Ray-Chaudhury A. Neuropathology in a case of episodic ataxia type 4. Neuropathol Appl Neurobiol. 2016;42:296–300. [PubMed]
  • Miura S, Shibata H, Furuya H, Ohyagi Y, Osoegawa M, Miyoshi Y, Matsunaga H, Shibata A, Matsumoto N, Iwaki A, Taniwaki T, Kikuchi H, Kira J, Fukumaki Y. The contactin 4 gene locus at 3p26 is a candidate gene of SCA16. Neurology. 2006;67:1236–41. [PubMed]
  • Miyatake S, Osaka H, Shiina M, Sasaki M, Takanashi J, Haginoya K, Wada T, Morimoto M, Ando N, Ikuta Y, Nakashima M, Tsurusaki Y, Miyake N, Ogata K, Matsumoto N, Saitsu H. Expanding the phenotypic spectrum of TUBB4A-associated hypomyelinating leukoencephalopathies. Neurology. 2014;82:2230–7. [PubMed]
  • Miyoshi Y, Yamada T, Tanimura M, Taniwaki T, Arakawa K, Ohyagi Y, Furuya H, Yamamoto K, Sakai K, Sasazuki T, Kira J. A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology. 2001;57:96–100. [PubMed]
  • Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, Boddaert N, Desguerre I, de Lonlay P, de Baulny HO, Munnich A, Rötig A. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet. 2008;82:623–30. [PMC free article ] [PubMed]
  • Moseley ML, Benzow KA, Schut LJ, Bird TD, Gomez CM, Barkhaus PE, Blindauer KA, Labuda M, Pandolfo M, Koob MD, Ranum LP. Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology. 1998;51:1666–71. [PubMed]
  • Musselman KE, Stoyanov CT, Marasigan R, Jenkins ME, Konczak J, Morton SM, Bastian AJ. Prevalence of ataxia in children: A systematic review. Neurology. 2014;82:80–9. [PMC free article ] [PubMed]
  • Nagaoka U, Takashima M, Ishikawa K, Yoshizawa K, Yoshizawa T, Ishikawa M, Yamawaki T, Shoji S, Mizusawa H. A gene on SCA4 locus causes dominantly inherited pure cerebellar ataxia. Neurology. 2000;54:1971–5. [PubMed]
  • Namavar Y, Barth PG, Poll-The BT, Baas F. Classification, diagnosis and potential mechanisms in pontocerebellar hypoplasia. Orphanet J Rare Dis. 2011;6:50. [PMC free article ] [PubMed]
  • Nance MA. Clinical aspects of CAG repeat diseases. Brain Pathol. 1997;7:881–900. [PubMed]
  • Németh AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD, Shanks ME, Gregory L, Buck D, Zameel Cader M, Talbot K, de Silva R, Fletcher N, Hastings R, Jayawant S, Morrison PJ, Worth P, Taylor M, Tolmie J, O'Regan M., UK Ataxia Consortium. Valentine R, Packham E, Evans J, Seller A, Ragoussis J. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013 Oct;136(Pt 10):3106–18. [PMC free article ] [PubMed]
  • Onat OE, Gulsuner S, Bilguvar K, Nazli Basak A, Topaloglu H, Tan M, Tan U, Gunel M, Ozcelik T. Missense mutation in the ATPase, aminophospholipid transporter protein ATP8A2 is associated with cerebellar atrophy and quadrupedal locomotion. Eur J Hum Genet. 2013;21:281–5. [PMC free article ] [PubMed]
  • Paulson HL. The spinocerebellar ataxias. J Neuroophthalmol. 2009;29:227–37. [PMC free article ] [PubMed]
  • Pfeffer G, Blakely EL, Alston CL, Hassani A, Boggild M, Horvath R, Samuels DC, Taylor RW, Chinnery PF. Adult-onset spinocerebellar ataxia syndromes due to MTATP6 mutations. J Neurol Neurosurg Psychiatry. 2012;83:883–6. [PMC free article ] [PubMed]
  • Pfeffer G, Pyle A, Griffin H, Miller J, Wilson V, Turnbull L, Fawcett K, Sims D, Eglon G, Hadjivassiliou M, Horvath R, Németh A, Chinnery PF. SPG7 mutations are a common cause of undiagnosed ataxia. Neurology. 2015 Feb 13; Epub ahead of print. [PMC free article ] [PubMed]
  • Pierson TM, Adams D, Bonn F, Martinelli P, Cherukuri PF, Teer JK, Hansen NF, Cruz P. Mullikin For The Nisc Comparative Sequencing Program JC, Blakesley RW, Golas G, Kwan J, Sandler A, Fuentes Fajardo K, Markello T, Tifft C, Blackstone C, Rugarli EI, Langer T, Gahl WA, Toro C. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genet. 2011;7:e1002325. [PMC free article ] [PubMed]
  • Ranum LP, Schut LJ, Lundgren JK, Orr HT, Livingston DM. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet. 1994;8:280–4. [PubMed]
  • Renaud M, Anheim M, Kamsteeg EJ, Mallaret M, Mochel F, Vermeer S, Drouot N, Pouget J, Redin C, Salort-Campana E, Kremer HP, Verschuuren-Bemelmans CC, Muller J, Scheffer H, Durr A, Tranchant C, Koenig M. Autosomal recessive cerebellar ataxia type 3 due to ANO10 mutations: delineation and genotype-phenotype correlation study. JAMA Neurol. 2014;71:1305–10. [PubMed]
  • Roxburgh RH, Marquis-Nicholson R, Ashton F, George AM, Lea RA, Eccles D, Mossman S, Bird T, van Gassen KL, Kamsteeg EJ, Love DR. The p.Ala510Val mutation in the SPG7 (paraplegin) gene is the most common mutation causing adult onset neurogenetic disease in patients of British ancestry. J Neurol. 2013;260:1286–94. [PubMed]
  • Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42:174–83. [PubMed]
  • Rüb U, Schöls L, Paulson H, Auburger G, Kermer P, Jen JC, Seidel K, Korf HW, Deller T. Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol. 2013;104:38–66. [PubMed]
  • Sakai H, Yoshida K, Shimizu Y, Morita H, Ikeda S, Matsumoto N. Analysis of an insertion mutation in a cohort of 94 patients with spinocerebellar ataxia type 31 from Nagano, Japan. Neurogenetics. 2010;11:409–15. [PMC free article ] [PubMed]
  • Saleem Q, Choudhry S, Mukerji M, Bashyam L, Padma MV, Chakravarthy A, Maheshwari MC, Jain S, Brahmachari SK. Molecular analysis of autosomal dominant hereditary ataxias in the Indian population: high frequency of SCA2 and evidence for a common founder mutation. Hum Genet. 2000;106:179–87. [PubMed]
  • Sandford E, Burmeister M. Genes and genetic testing in hereditary ataxias. Genes (Basel) 2014;5:586–603. [PMC free article ] [PubMed]
  • Santens P, Van Damme T, Steyaert W, Willaert A, Sablonnière B, De Paepe A, Coucke PJ, Dermaut B. RNF216 mutations as a novel cause of autosomal recessive Huntington-like disorder. Neurology. 2015;84:1760–6. [PubMed]
  • Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T, Takahashi M, Matsuura T, Flanigan KM, Iwasaki S, Ishino F, Saito Y, Murayama S, Yoshida M, Hashizume Y, Takahashi Y, Tsuji S, Shimizu N, Toda T, Ishikawa K, Mizusawa H. Spinocerebellar ataxia type 31 is associated with "inserted" penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet. 2009;85:544–57. [PMC free article ] [PubMed]
  • Schelhaas HJ, Ippel PF, Hageman G, Sinke RJ, van der Laan EN, Beemer FA. Clinical and genetic analysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia. J Neurol. 2001;248:113–20. [PubMed]
  • Schelhaas HJ, Verbeek DS, Van de Warrenburg BP, Sinke RJ. SCA19 and SCA22: evidence for one locus with a worldwide distribution. Brain. 2004;127:E6. [PubMed]
  • Scholl UI, Choi M, Liu T, Ramaekers VT, Häusler MG, Grimmer J, Tobe SW, Farhi A, Nelson-Williams C, Lifton RP. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A. 2009;106:5842–7. [PMC free article ] [PubMed]
  • Schöls L, Amoiridis G, Buttner T, Przuntek H, Epplen JT, Riess O. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol. 1997;42:924–32. [PubMed]
  • Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304. [PubMed]
  • Schwarz N, Hahn A, Bast T, Müller S, Löffler H, Maljevic S, Gaily E, Prehl I, Biskup S, Joensuu T, Lehesjoki AE, Neubauer BA, Lerche H, Hedrich UB. Mutations in the sodium channel gene SCN2A cause neonatal epilepsy with late-onset episodic ataxia. J Neurol. 2016;263:334–43. [PubMed]
  • Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012;124:1–21. [PubMed]
  • Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, Gloyn AL, Edghill EL, Hattersley AT, Wellauer PK, Goodwin G, Houlston RS. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet. 2004;36:1301–5. [PubMed]
  • Serrano-Munuera C, Corral-Juan M, Stevanin G, San Nicolás H, Roig C, Corral J, Campos B, de Jorge L, Morcillo-Suárez C, Navarro A, Forlani S, Durr A, Kulisevsky J, Brice A, Sánchez I, Volpini V, Matilla-Dueñas A. New subtype of spinocerebellar ataxia with altered vertical eye movements mapping to chromosome 1p32. JAMA Neurol. 2013;70:764–71. [PubMed]
  • Shadrina MI, Shulskaya MV, Klyushnikov SA, Nikopensius T, Nelis M, Kivistik PA, Komar AA, Limborska SA, Illarioshkin SN, Slominsky PA. ITPR1 gene p.Val1553Met mutation in Russian family with mild Spinocerebellar ataxia. Cerebellum Ataxias. 2016 Jan 13;3:2. [PMC free article ] [PubMed]
  • Shakkottai VG, Fogel BL. Clinical neurogenetics: autosomal dominant spinocerebellar ataxia. Neurol Clin. 2013;31:987–1007. [PMC free article ] [PubMed]
  • Shi Y, Wang J, Li JD, Ren H, Guan W, He M, Yan W, Zhou Y, Hu Z, Zhang J, Xiao J, Su Z, Dai M, Wang J, Jiang H, Guo J, Zhou Y, Zhang F, Li N, Du J, Xu Q, Hu Y, Pan Q, Shen L, Wang G, Xia K, Zhang Z, Tang B. Identification of CHIP as a novel causative gene for autosomal recessive cerebellar ataxia. PLoS One. 2013;8:e81884. [PMC free article ] [PubMed]
  • Shimizu Y, Yoshida K, Okano T, Ohara S, Hashimoto T, Fukushima Y, Ikeda S. Regional features of autosomal-dominant cerebellar ataxia in Nagano: clinical and molecular genetic analysis of 86 families. J Hum Genet. 2004;49:610–6. [PubMed]
  • Siekierska A, Isrie M, Liu Y, Scheldeman C, Vanthillo N, Lagae L, de Witte PA, Van Esch H, Goldfarb M, Buyse GM. Gain-of-function FHF1 mutation causes early-onset epileptic encephalopathy with cerebellar atrophy. Neurology. 2016;86:2162–70. [PMC free article ] [PubMed]
  • Silveira I, Miranda C, Guimaraes L, Moreira MC, Alonso I, Mendonca P, Ferro A, Pinto-Basto J, Coelho J, Ferreirinha F, Poirier J, Parreira E, Vale J, Januario C, Barbot C, Tuna A, Barros J, Koide R, Tsuji S, Holmes SE, Margolis RL, Jardim L, Pandolfo M, Coutinho P, Sequeiros J. Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol. 2002;59:623–9. [PubMed]
  • Spiegel R, Pines O, Ta-Shma A, Burak E, Shaag A, Halvardson J, Edvardson S, Mahajna M, Zenvirt S, Saada A, Shalev S, Feuk L, Elpeleg O. Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2. Am J Hum Genet. 2012;90:518–23. [PMC free article ] [PubMed]
  • Steckley JL, Ebers GC, Cader MZ, McLachlan RS. An autosomal dominant disorder with episodic ataxia, vertigo, and tinnitus. Neurology. 2001;57:1499–502. [PubMed]
  • Stevanin G, Bouslam N, Ravaux L, Boland A, Durr A, Brice A. Autosomal dominant cerebellar ataxia with sensory neuropathy maps to the spinocerebellar ataxia 25 (SCA25) locus on chromosome 2p15-p21. Am J Hum Genet. 2003;73 Suppl 1:2236.
  • Stevanin G, Herman A, Brice A, Durr A. Clinical and MRI findings in spinocerebellar ataxia type 5. Neurology. 1999;53:1355–7. [PubMed]
  • Storey E, Bahlo M, Fahey M, Sisson O, Lueck CJ, Gardner RJ. A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry. 2009;80:408–11. [PubMed]
  • Storey E, du Sart D, Shaw JH, Lorentzos P, Kelly L, McKinley Gardner RJ, Forrest SM, Biros I, Nicholson GA. Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. Am J Med Genet. 2000;95:351–7. [PubMed]
  • Sun Y, Almomani R, Breedveld GJ, Santen GW, Aten E, Lefeber DJ, Hoff JI, Brusse E, Verheijen FW, Verdijk RM, Kriek M, Oostra B, Breuning MH, Losekoot M, den Dunnen JT, van de Warrenburg BP, Maat-Kievit AJ. Autosomal recessive spinocerebellar ataxia 7 (SCAR7) is caused by variants in TPP1, the gene involved in classic late-infantile neuronal ceroid lipofuscinosis 2 disease (CLN2 disease). Hum Mutat. 2013;34:706–13. [PubMed]
  • Sun YM, Lu C, Wu ZY. Spinocerebellar ataxia: relationship between phenotype and genotype - a review. Clin Genet. 2016;90:305–14. [PubMed]
  • Svenstrup K, Nielsen TT, Aidt F, Rostgaard N, Duno M, Wibrand F, Vinther-Jensen T, Law I, Vissing J, Roos P, Hjermind LE, Nielsen JE. SCA28: Novel mutation in the AFG3L2 proteolytic domain causes a mild cerebellar syndrome with selective type-1 muscle fiber atrophy. Cerebellum. 2017;16:62–7. [PubMed]
  • Sweadner KJ, Toro C, Whitlow CT, Snively BM, Cook JF, Ozelius LJ, Markello TC, Brashear A. ATP1A3 Mutation in Adult Rapid-Onset Ataxia. PLoS One. 2016;11:e0151429. [PMC free article ] [PubMed]
  • Synofzik M, Schüle R, Schulze M, Gburek-Augustat J, Schweizer R, Schirmacher A, Krägeloh-Mann I, Gonzalez M, Young P, Züchner S, Schöls L, Bauer P. Phenotype and frequency of STUB1 mutations: next-generation screenings in Caucasian ataxia and spastic paraplegia cohorts. Orphanet J Rare Dis. 2014;9:57. [PMC free article ] [PubMed]
  • Synofzik M, Smets K, Mallaret M, Di Bella D, Gallenmüller C, Baets J, Schulze M, Magri S, Sarto E, Mustafa M, Deconinck T, Haack T, Züchner S, Gonzalez M, Timmann D, Stendel C, Klopstock T, Durr A, Tranchant C, Sturm M, Hamza W, Nanetti L, Mariotti C, Koenig M, Schöls L, Schüle R, de Jonghe P, Anheim M, Taroni F, Bauer P. SYNE1 ataxia is a common recessive ataxia with major non-cerebellar features: a large multi-centre study. Brain. 2016;139:1378–93. [PubMed]
  • Tang B, Liu C, Shen L, Dai H, Pan Q, Jing L, Ouyang S, Xia J. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol. 2000;57:540–4. [PubMed]
  • Thomas AC, Williams H, Setó-Salvia N, Bacchelli C, Jenkins D, O'Sullivan M, Mengrelis K, Ishida M, Ocaka L, Chanudet E, James C, Lescai F, Anderson G, Morrogh D, Ryten M, Duncan AJ, Pai YJ, Saraiva JM, Ramos F, Farren B, Saunders D, Vernay B, Gissen P, Straatmaan-Iwanowska A, Baas F, Wood NW, Hersheson J, Houlden H, Hurst J, Scott R, Bitner-Glindzicz M, Moore GE, Sousa SB, Stanier P. Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome. Am J Hum Genet. 2014;95:611–21. [PMC free article ] [PubMed]
  • Tsoi H, Yu AC, Chen ZS, Ng NK, Chan AY, Yuen LY, Abrigo JM, Tsang SY, Tsui SK, Tong TM, Lo IF, Lam ST, Mok VC, Wong LK, Ngo JC, Lau KF, Chan TF, Chan HY. A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet. 2014;51:590–5. [PMC free article ] [PubMed]
  • van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC, Scheffer H, Brunt ER, Ippel PF, Maat-Kievit JA, Dooijes D, Notermans NC, Lindhout D, Knoers NV, Kremer HP. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology. 2002;58:702–8. [PubMed]
  • van Gassen KL, van der Heijden CD, de Bot ST, den Dunnen WF, van den Berg LH, Verschuuren-Bemelmans CC, Kremer HP, Veldink JH, Kamsteeg EJ, Scheffer H, van de Warrenburg BP. Genotype-phenotype correlations in spastic paraplegia type 7: a study in a large Dutch cohort. Brain. 2012;135:2994–3004. [PubMed]
  • Van Schil K, Meire F, Karlstetter M, Bauwens M, Verdin H, Coppieters F, Scheiffert E, Van Nechel C, Langmann T, Deconinck N, De Baere E. Early-onset autosomal recessive cerebellar ataxia associated with retinal dystrophy: new human hotfoot phenotype caused by homozygous GRID2 deletion. Genet Med. 2015;17:291–9. [PubMed]
  • van Swieten JC, Brusse E, de Graaf BM, Krieger E, van de Graaf R, de Koning I, Maat-Kievit A, Leegwater P, Dooijes D, Oostra BA, Heutink P. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebral ataxia. Am J Hum Genet. 2003;72:191–9. [PMC free article ] [PubMed]
  • Verbeek DS, Schelhaas JH, Ippel EF, Beemer FA, Pearson PL, Sinke RJ. Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21. Hum Genet. 2002;111:388–93. [PubMed]
  • Verbeek DS, van de Warrenburg BP, Wesseling P, Pearson PL, Kremer HP, Sinke RJ. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3. Brain. 2004;127:2551–7. [PubMed]
  • Vermeer S, Hoischen A, Meijer RP, Gilissen C, Neveling K, Wieskamp N, de Brouwer A, Koenig M, Anheim M, Assoum M, Drouot N, Todorovic S, Milic-Rasic V, Lochmüller H, Stevanin G, Goizet C, David A, Durr A, Brice A, Kremer B, van de Warrenburg BP, Schijvenaars MM, Heister A, Kwint M, Arts P, van der Wijst J, Veltman J, Kamsteeg EJ, Scheffer H, Knoers N. Targeted next-generation sequencing of a 12.5 Mb homozygous region reveals ANO10 mutations in patients with autosomal-recessive cerebellar ataxia. Am J Hum Genet. 2010;87:813–9. [PMC free article ] [PubMed]
  • Vuillaume I, Devos D, Schraen-Maschke S, Dina C, Lemainque A, Vasseur F, Bocquillon G, Devos P, Kocinski C, Marzys C, Destee A, Sablonniere B. A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3-p15.1. Ann Neurol. 2002;52:666–70. [PubMed]
  • Wan J, Steffen J, Yourshaw M, Mamsa H, Andersen E, Rudnik-Schöneborn S, Pope K, Howell KB, McLean CA, Kornberg AJ, Joseph J, Lockhart PJ, Zerres K, Ryan MM, Nelson SF, Koehler CM, Jen JC. Loss of function of SLC25A46 causes lethal congenital pontocerebellar hypoplasia. Brain. 2016 2016 Aug 20;:aww212. pii. Epub ahead of print. [PubMed]
  • Wang JL, Yang X, Xia K, Hu ZM, Weng L, Jin X, Jiang H, Zhang P, Shen L, Guo JF, Li N, Li YR, Lei LF, Zhou J, Du J, Zhou YF, Pan Q, Wang J, Wang J, Li RQ, Tang BS. TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain. 2010;133:3510–8. [PubMed]
  • Watanabe H, Tanaka F, Matsumoto M, Doyu M, Ando T, Mitsuma T, Sobue G. Frequency analysis of autosomal dominant cerebellar ataxias in Japanese patients and clinical characterization of spinocerebellar ataxia type 6. Clin Genet. 1998;53:13–9. [PubMed]
  • Winter N, Kovermann P, Fahlke C. A point mutation associated with episodic ataxia 6 increases glutamate transporter anion currents. Brain. 2012;135:3416–25. [PubMed]
  • Yapici Z, Eraksoy M. Non-progressive congenital ataxia with cerebellar hypoplasia in three families. Acta Paediatr. 2005;94:248–53. [PubMed]
  • Yu GY, Howell MJ, Roller MJ, Xie TD, Gomez CM. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol. 2005;57:349–54. [PubMed]
  • Zanni G, Bertini E, Bellcross C, Nedelec B, Froyen G, Neuhäuser G, Opitz JM, Chelly J. X-linked congenital ataxia: a new locus maps to Xq25-q27.1. Am J Med Genet A. 2008;146A:593–600. [PubMed]
  • Zanni G, Bertini ES. X-linked disorders with cerebellar dysgenesis. Orphanet J Rare Dis. 2011;6:24. [PMC free article ] [PubMed]
  • Zanni G, Calì T, Kalscheuer VM, Ottolini D, Barresi S, Lebrun N, Montecchi-Palazzi L, Hu H, Chelly J, Bertini E, Brini M, Carafoli E. Mutation of plasma membrane Ca2+ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc Natl Acad Sci U S A. 2012;2012;109:14514–9. [PMC free article ] [PubMed]
  • Zanni G, Saillour Y, Nagara M, Billuart P, Castelnau L, Moraine C, Faivre L, Bertini E, Durr A, Guichet A, Rodriguez D, des Portes V, Beldjord C, Chelly J. Oligophrenin 1 mutations frequently cause X-linked mental retardation with cerebellar hypoplasia. Neurology. 2005;65:1364–9. [PubMed]
  • Zortea M, Armani M, Pastorello E, Nunez GF, Lombardi S, Tonello S, Rigoni MT, Zuliani L, Mostacciuolo ML, Gellera C, Di Donato S, Trevisan CP. Prevalence of inherited ataxias in the province of Padua, Italy. Neuroepidemiology. 2004;23:275–80. [PubMed]

Suggested Reading

  • Rottnek M, Riggio S, Byne W, Sano M, Margolis RL, Walker RH. Schizophrenia in a patient with spinocerebellar ataxia 2: coincidence of two disorders or a neurodegenerative disease presenting with psychosis? Am J Psychiatry. 2008;165:964–7. [PubMed]

Chapter Notes

Revision History

  • 3 November 2016 (tb) Revision: addition of FGF12, ATP1A3, POLR3A, POLR3B, SLC25A46, TSFM, VWA3B, WDR73, ATP2B3, and citations
  • 3 March 2016 (tb) Revision: addition of CACNA1G, C9orf72, SCN2A, ATG5, PMPCA, TXN2, UBA5, and citations
  • 11 June 2015 (tb/aa) Revision: addition of SNX4 (SCAR20), RNF216 (Gordon Holmes syndrome), and citations
  • 2 April 2015 (tb) Revision: mutation of PNKP added as a cause of AR ataxia; ITPR1 added as the gene associated with SCA16
  • 5 March 2015 (tb) Revision: addition of SPG7 – Table 5
  • 26 November 2014 (tb) Revision: addition of PNPLA6,CLN5, and CWF19L1
  • 30 October 2014 (tb) Revision: addition of Brown-Vialetto-Van Laere syndrome 2 (caused by mutation of SLC52A2) and Wolfram syndrome (caused by mutation of WFS1)
  • 16 October 2014 (aa) Revision: addition of SCA40, caused by mutation of CCDC88C
  • 2 October 2014 (tb) Revision: SCA21, Lichtenstein-Knorr Syndrome added
  • 28 August 2014 (tb) Revision: addition of ELOVL5 and LAMA
  • 14 August 2014 (me) Comprehensive update posted live
  • 3 April 2014 (tb) Revision: to information on KIAA0226 [Assoum et al 2013]
  • 20 March 2014 (tb) Revision: SCA34; SPTBN2 associated with autosomal recessive cerebellar ataxia; update in prevalence information
  • 27 February 2014 (tb) Revision: addition of CLCN2, WWOX, and links to OMIM Phenotypic Series
  • 13 February 2014 (tb) Revision: review of spastic ataxia
  • 23 January 2014 (tb) Revision: edits to prevalence, clinical features of ADCA, AR single cases; added SCA37 to Tables 1&2; added SCA32 and SCA34 to Table 1.
  • 7 November 2013 (tb) Revision: autosomal recessive SCA with eye movement abnormalities (most notably tonic upgaze) caused by mutations in GRID2
  • 17 January 2013 (tb) Revision: mutation in KCND3 found to cause SCA19 and SCA22 (SCA19/22)
  • 3 January 2013 (tb) Revision: clinical testing available for SCA35
  • 1 November 2012 (tb) Revision: mutations in EEF2 identified as causative for SCA26
  • 11 October 2012 (tb) Revision: mutations in VAMP1 identified as causative for SPAX1; mutations in GRM1 identified as causative for ARCA
  • 13 September 2012 (tb) Revision: addition of Onat et al [2013]
  • 31 May 2012 (tb) Revision: to include Pfeffer et al 2012 re: ataxia associated with missense mutations in MTATP6; SCA18 assigned by OMIM to ataxia phenotype described by Brkanac et al 2002 and 2009.
  • 26 April 2012 (tb) Revision: autosomal recessive SCA caused by mutation in ANO10 added
  • 16 February 2012 (tb) Revision: SCA35 added
  • 26 January 2012 (tb) Revision: updated information on SCA with axonal neuropathy; SCAR9 added
  • 15 September 2011 (tb) Revision: additional rare form of autosomal recessive ataxia
  • 21 July 2011 (tb) Revision: addition of SCA36
  • 17 February 2011 (me) Comprehensive update posted live
  • 6 January 2009 (cd) Revision: 260-kb duplication of 11q12.2-11q12.3 identified as probable cause of SCA20
  • 25 September 2008 (tb) Revision: heterozygous mutations in AFG3L2 identified as the cause of SCA28
  • 27 February 2008 (tb) Revision: deletion of part of ITPR1 identified as cause of SCA15
  • 18 December 2007 (tb) Revision: mutations in TTBK2 associated with SCA11
  • 27 June 2007 (me) Comprehensive update posted to live Web site
  • 27 October 2006 (tb) Revision: SCA16 reassigned to 3p26.2-pter
  • 31 August 2006 (tb) Revision: clinical testing available for infantile-onset spinocerebellar ataxia (IOSCA)
  • 4 August 2006 (tb) Revision: clinical testing available for SCA5, SCA13, SCA27, and 16q22-linked SCA
  • 27 April 2006 (tb) Revision: mutations in KCNC3 cause SCA13; additions to Causes- Autosomal Dominant Cerebellar Ataxias, References
  • 1 February 2006 (tb) Revision: mutations in SPTBN2 cause SCA5
  • 19 December 2005 (tb) Revision: Marinesco-Sjögren caused by mutations in SIL1
  • 8 November 2005 (tb) Revision: SCA28
  • 17 October 2005 (tb) Revision: SCA27
  • 14 September 2005 (tb) Revision: author changes
  • 12 July 2005 (tb) Revision: SCA4 gene and protein identified
  • 4 April 2005 (tb) Revision: SCA26 added
  • 8 February 2005 (me) Comprehensive update posted to live Web site
  • 23 November 2004 (tb) Revision: author changes
  • 14 October 2004 (tb/cd) Revision
  • 30 June 2004 (tb) Revision: SCA20 added
  • 11 June 2004 (tb) Revision: SCA12 gene identified
  • 27 May 2004 (ca) Revision: addition of SCA world map (Figure 1)
  • 23 January 2004 (tb) Revision: SCA19
  • 30 December 2003 (tb) Revision: change in test availability
  • 2 October 2003 (tb) Revision: X-linked sideroblastic anemia gene identified
  • 17 July 2003 (tb) Revision: SCA22
  • 20 May 2003 (tb) Revision
  • 27 February 2003 (me) Comprehensive update posted to live Web site
  • 9 January 2002 (tb) Revision: SCA18
  • 8 November 2001 (tb) Revision: SCA15, SCA18
  • 14 August 2001 (tb) Revision: SCA17
  • 25 July 2001 (tb) Revision: SCA16
  • 11 April 2001 (tb) Revision: SCA12
  • 8 December 2000 (tb) Revision: SCA10
  • 15 November 2000 (tb) Revision: AOA
  • 8 November 2000 (tb) Revision: SCA10
  • 25 September 2000 (tb) Revision: SCA8
  • 25 August 2000 (tb) Revision: SCA14
  • 7 August 2000 (tb) Revision: Hereditary Ataxias/Clinical Features & References
  • 14 June 2000 (tb) Revision
  • 22 May 2000 (tb) Revision
  • 14 January 2000 (tb) Revision
  • 25 October 1999 (tb) Revision
  • 31 August 1999 (tb) Revision
  • 11 March 1999 (tb) Revision: SCA8
  • 5 March 1999 (tb) Revision: SCA10
  • 28 October 1998 (me) Overview posted to live Web site
  • 23 June 1998 (tb) Original submission